scholarly journals Stat3 Activates the Receptor Tyrosine Kinase Like Orphan Receptor-1 Gene in Chronic Lymphocytic Leukemia Cells

PLoS ONE ◽  
2010 ◽  
Vol 5 (7) ◽  
pp. e11859 ◽  
Author(s):  
Ping Li ◽  
David Harris ◽  
Zhiming Liu ◽  
Jie Liu ◽  
Michael Keating ◽  
...  
Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1587-1587
Author(s):  
Sabrina Uhrmacher ◽  
Magdalena Hertweck ◽  
Julian Paesler ◽  
Felix Erdfelder ◽  
Alexandra Filipovich ◽  
...  

Abstract Abstract 1587 Poster Board I-613 In chronic lymphocytic leukemia (CLL) WNT signaling is constitutively active and several members of this signaling pathway are uniformely upregulated in these cells. Apart from classical WNT receptors like FZD and LRP6, receptor tyrosine kinase-like orphan receptor 1 (ROR1) has been shown to function as a receptor for WNT proteins, too. Furthermore, it could recently be demonstrated that ROR1 is frequently expressed on the surface of CLL cells and might therefore serve as a therapeutic target in this disease. However, so far only little is known about the expression status of this protein in different patients. Moreover, a diagnostic antibody for flow cytometric investigations is lacking. Thus, the aim of our study was to i) establish a directly labelled anti-ROR1 antibody for flow cytometry, ii) to confirm previous results on ROR1 expression in CLL, iii) to investigate ROR1 expression in different cell compartments and iv) correlate our findings to known markers of risk and disease progression. Peripheral blood of CLL patients as well as healthy volunteers was subjected to flow cytometric analysis. Besides standard determination of leukocyte subpopulations ZAP70 and CD38 status was assessed according to current diagnostic recommendations. In addition, ROR1 surface expression was first detected by flow cytometry using a specific primary antibody directed against ROR1 and a fluorescent labelled secondary antibody. Using this experimental setting we found that ROR1 is expressed on 63.4% of all neoplastic CLL cells and also on 30.5% of T cells in the peripheral CLL blood. In contrast, no ROR1 expression could be detected on NK cells, B cells, CD8+- or CD4+-T cells of healthy individuals. To improve the analytical technique the ROR1 antibody was directly conjugated with Phycoerythrin (PE) and the experiments were repeated. With the conjugated antibody we detected ROR1 expression on 97.1% of neoplastic CLL cells and virtually on no T lymphocytes. ROR1 expression levels correlated neither with the expression of ZAP70 nor with CD38. Again, we could not detect ROR1 expression on peripheral blood cells of our healthy volunteers. Taken together, ROR1 expression appears to be highly restricted to CLL cells. If in addition to CD5 and CD19 ROR1 detection is included into diagnostic flow cytometric panels the specificity and sensitivity of immunophenotypic CLL diagnostics may be greatly enhanced. Disclosures Hallek: Roche: Consultancy, Honoraria, Research Funding.


HemaSphere ◽  
2019 ◽  
Vol 3 (S1) ◽  
pp. 859
Author(s):  
A. Senturk Yikilmaz ◽  
D.N. Avcı ◽  
S. Mine Bakanay ◽  
S. Akinci ◽  
M. Falay ◽  
...  

2011 ◽  
Vol 35 (10) ◽  
pp. 1360-1366 ◽  
Author(s):  
Sabrina Uhrmacher ◽  
Christina Schmidt ◽  
Felix Erdfelder ◽  
Simon Jonas Poll-Wolbeck ◽  
Iris Gehrke ◽  
...  

2017 ◽  
Vol 88 ◽  
pp. 814-822 ◽  
Author(s):  
Leili Aghebati-Maleki ◽  
Mahdi Shabani ◽  
Behzad Baradaran ◽  
Morteza Motallebnezhad ◽  
Jafar Majidi ◽  
...  

2016 ◽  
Vol 23 (14) ◽  
pp. 3734-3743 ◽  
Author(s):  
Viralkumar Patel ◽  
Kumudha Balakrishnan ◽  
Elena Bibikova ◽  
Mary Ayres ◽  
Michael J. Keating ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1799-1799
Author(s):  
Maria Göbel ◽  
Michael Möllmann ◽  
Andre Görgens ◽  
Ulrich Dührsen ◽  
Andreas Hüttmann ◽  
...  

Abstract Abstract 1799 The receptor tyrosine kinase Axl belongs to the TAM (Tyro-3, Axl and Mer) family and is involved in the progression of several human malignancies including chronic lymphocytic leukemia (CLL), where it is has been found to be overexpressed in comparison to normal B-cells. An increasing body of evidence suggests that Axl acts as an oncogene which increases the survival, proliferation, metastatic potential and chemotherapy resistance of tumor cells. Hence, it has been recently identified as a potential therapeutic target in a wide range of tumor entities with deregulated Axl expression including prostate cancer, glioma, lung cancer and CLL. Here, we investigated two different Axl inhibitors for their potential to inhibit the migratory capacity and survival of leukemic cells in preclinical CLL models. In vitro studies: Freshly isolated PBMC (>90% CD5+CD19+) from CLL patients were incubated in serum free medium for 48h containing concentrations series of 2 different Axl inhibitors: BMS777607, a previously published inhibitor of the MET kinase family, and LDC2636, a novel inhibitor of the TAM receptor tyrosine kinase (RTK) family with high affinity to Axl. Viability of CLL cells was assessed by trypan blue staining and flow cytometry employing annexin V staining. Since a polarized phenotype is required for migration, cell polarization was analyzed by time-lapse video-microscopy. We detected cytotoxic effects in a patient dependent manner that were more prevalent in LDC2636 as compared to BMS777607 treated cells (LD50= 1.4 μM vs. 5.2 μM, p<0.004, n=5). Cell polarization of the remaining viable cells was significantly reduced in a dose dependent fashion in comparison to vehicle only controls (LDC2636 IC50 = 7.2 μM, p<0.00001; BMS777607: IC50=6.2μM; p=0.0004). Of note, both Axl inhibitors exhibited significantly weaker effects on both, the viability and cell polarization of normal PBMC over the whole concentration range tested (p<0.05, n=5). In vivo studies: To verify our hypothesis that reduced cell polarization results in decreased homing of leukemic cells in vivo we employed a recently developed adoptive transfer model of CLL. In this model NOD/SCID/gcnull(NSG) mice were pre-treated with a single intraperitoneal bolus of LDC2636 or BMS777607 (20 mg/kg) and subsequently transplanted with primary CLL cells. Both Axl inhibitors significantly reduced the homing capacity of CLL cells to the bone marrow of NSG mice by 43% and 59%, respectively, compared to vehicle treated controls (LDC2636: p=0.046, BMS777607 p=0.0077; n=3). These data demonstrate that Axl inhibitors exert potent in vitro and in vivo activity against human CLL cells, which is caused at least in part by the suppression of CLL homing to their supportive stromal niches. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document