scholarly journals A Fear-Inducing Odor Alters PER2 and c-Fos Expression in Brain Regions Involved in Fear Memory

PLoS ONE ◽  
2011 ◽  
Vol 6 (5) ◽  
pp. e20658 ◽  
Author(s):  
Harry Pantazopoulos ◽  
Hamid Dolatshad ◽  
Fred C. Davis
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ke-Xin Li ◽  
Mu He ◽  
Wenlei Ye ◽  
Jeffrey Simms ◽  
Michael Gill ◽  
...  

TMEM16B (ANO2) is the Ca2+-activated chloride channel expressed in multiple brain regions, including the amygdala. Here we report that Ano2 knockout mice exhibit impaired anxiety-related behaviors and context-independent fear memory, thus implicating TMEM16B in anxiety modulation. We found that TMEM16B is expressed in somatostatin-positive (SOM+) GABAergic neurons of the central lateral amygdala (CeL), and its activity modulates action potential duration and inhibitory postsynaptic current (IPSC). We further provide evidence for TMEM16B actions not only in the soma but also in the presynaptic nerve terminals of GABAergic neurons. Our study reveals an intriguing role for TMEM16B in context-independent but not context-dependent fear memory, and supports the notion that dysfunction of the amygdala contributes to anxiety-related behaviors.


2020 ◽  
Vol 7 (8) ◽  
pp. 200628
Author(s):  
Rebecca Katajamaa ◽  
Per Jensen

Brain size reduction is a common trait in domesticated species when compared to wild conspecifics. This reduction can happen through changes in individual brain regions as a response to selection on specific behaviours. We selected red junglefowl for 10 generations for diverging levels of fear towards humans and measured brain size and composition as well as habituation learning and conditioned place preference learning in young chicks. Brain size relative to body size as well as brainstem region size relative to whole brain size were significantly smaller in chicks selected for low fear of humans compared to chicks selected for high fear of humans. However, when including allometric effects in the model, these differences disappear but a tendency towards larger cerebra in low-fear chickens remains. Low-fear line chicks habituated more effectively to a fearful stimulus with prior experience of that same stimulus, whereas high-fear line chicks with previous experience of the stimulus had a response similar to naive chicks. The phenotypical changes are in line with previously described effects of domestication.


2000 ◽  
Vol 278 (5) ◽  
pp. R1267-R1274 ◽  
Author(s):  
Colleen M. Novak ◽  
Laura Smale ◽  
Antonio A. Nunez

Most mammals show daily rhythms in sleep and wakefulness controlled by the primary circadian pacemaker, the suprachiasmatic nucleus (SCN). Regardless of whether a species is diurnal or nocturnal, neural activity in the SCN and expression of the immediate-early gene product Fos increases during the light phase of the cycle. This study investigated daily patterns of Fos expression in brain areas outside the SCN in the diurnal rodent Arvicanthis niloticus. We specifically focused on regions related to sleep and arousal in animals kept on a 12:12-h light-dark cycle and killed at 1 and 5 h after both lights-on and lights-off. The ventrolateral preoptic area (VLPO), which contained cells immunopositive for galanin, showed a rhythm in Fos expression with a peak at zeitgeber time (ZT) 17 (with lights-on at ZT 0). Fos expression in the paraventricular thalamic nucleus (PVT) increased during the morning (ZT 1) but not the evening activity peak of these animals. No rhythm in Fos expression was found in the centromedial thalamic nucleus (CMT), but Fos expression in the CMT and PVT was positively correlated. A rhythm in Fos expression in the ventral tuberomammillary nucleus (VTM) was 180° out of phase with the rhythm in the VLPO. Furthermore, Fos production in histamine-immunoreactive neurons of the VTM cells increased at the light-dark transitions when A. niloticus show peaks of activity. The difference in the timing of the sleep-wake cycle in diurnal and nocturnal mammals may be due to changes in the daily pattern of activity in brain regions important in sleep and wakefulness such as the VLPO and the VTM.


2014 ◽  
Vol 306 (5) ◽  
pp. R363-R373 ◽  
Author(s):  
Al-Shaimaa F. Ahmed ◽  
Li Dai ◽  
Winnie Ho ◽  
Alastair V. Ferguson ◽  
Keith A. Sharkey

The subfornical organ (SFO) is an important sensory circumventricular organ implicated in the regulation of fluid homeostasis and energy balance. We investigated whether the SFO is activated by the hormone cholecystokinin (CCK). CCK1 and CCK2 receptors were identified in the SFO by RT-PCR. Dissociated SFO neurons that responded to CCK (40/77), were mostly depolarized (9.2 ± 0.9 mV, 30/77), but some were hyperpolarized (−7.3 ± 1.1 mV, 10/77). We next examined the responses of SFO neurons in vivo to CCK (16 μg/kg ip), in the presence and absence of CCK1 or CCK2 receptor antagonists (devazepide; 600 μg/kg and L-365,260; 100 μg/kg, respectively), using the functional activation markers c-Fos and phosphorylated extracellular signal-related kinase (p-ERK). The nucleus of the solitary tract (NTS) served as a control for CCK-induced activity. There was a significant increase in c-Fos expression in the NTS (259.2 ± 20.8 neurons) compared with vehicle (47.5 ± 2.5). Similarly, in the SFO, c-Fos was expressed in 40.5 ± 10.6 neurons in CCK-treated compared with 6.6 ± 2.7 in vehicle-treated rats ( P < 0.01). Devazepide significantly reduced the effects of CCK in the NTS but not in SFO. L-365,260 blocked the effects of CCK in both brain regions. CCK increased the number of p-ERK neurons in NTS (27.0 ± 4.0) as well as SFO (18.0 ± 4.0), compared with vehicle (8.0 ± 2.6 and 4.3 ± 0.6, respectively; P < 0.05). Both devazepide and L-365,260 reduced CCK-induced p-ERK in NTS, but only L-365,260 reduced it in the SFO. In conclusion, the SFO represents a novel brain region at which circulating CCK may act via CCK2 receptors to influence central autonomic control.


2009 ◽  
Vol 65 (3) ◽  
pp. 228-235 ◽  
Author(s):  
Fumiaki Yokoi ◽  
Mai T. Dang ◽  
Courtney A. Miller ◽  
Andrea G. Marshall ◽  
Susan L. Campbell ◽  
...  

2012 ◽  
Vol 302 (10) ◽  
pp. R1219-R1232 ◽  
Author(s):  
T. Luise King ◽  
Cheryl M. Heesch ◽  
Catharine G. Clark ◽  
David D. Kline ◽  
Eileen M. Hasser

Peripheral chemoreceptor afferent information is sent to the nucleus tractus solitarii (nTS), integrated, and relayed to other brain regions to alter cardiorespiratory function. The nTS projects to the hypothalamic paraventricular nucleus (PVN), but activation and phenotype of these projections during chemoreflex stimulation is unknown. We hypothesized that activation of PVN-projecting nTS neurons occurs primarily at high intensities of hypoxia. We assessed ventilation and cardiovascular parameters in response to increasing severities of hypoxia. Retrograde tracers were used to label nTS PVN-projecting neurons and, in some rats, rostral ventrolateral medulla (RVLM)-projecting neurons. Immunohistochemistry was performed to identify nTS cells that were activated (Fos-immunoreactive, Fos-IR), catecholaminergic, and GABAergic following hypoxia. Conscious rats underwent 3 h normoxia ( n = 4, 21% O2) or acute hypoxia (12, 10, or 8% O2; n = 5 each). Hypoxia increased ventilation and the number of Fos-IR nTS cells (21%, 13 ± 2; 12%, 58 ± 4; 10%, 166 ± 22; 8%, 186 ± 6). Fos expression after 10% O2was similar whether arterial pressure was allowed to decrease (−13 ± 1 mmHg) or was held constant. The percentage of PVN-projecting cells activated was intensity dependent, but contrary to our hypothesis, PVN-projecting nTS cells exhibiting Fos-IR were found at all hypoxic intensities. Notably, at all intensities of hypoxia, ∼75% of the activated PVN-projecting nTS neurons were catecholaminergic. Compared with RVLM-projecting cells, a greater percentage of PVN-projecting nTS cells was activated by 10% O2. Data suggest that increasing hypoxic intensity activates nTS PVN-projecting cells, especially catecholaminergic, PVN-projecting neurons. The nTS to PVN catecholaminergic pathway may be critical even at lower levels of chemoreflex activation and more important to cardiorespiratory responses than previously considered.


Sign in / Sign up

Export Citation Format

Share Document