scholarly journals Salinity Gradient of the Baltic Sea Limits the Reproduction and Population Expansion of the Newly Invaded Comb Jelly Mnemiopsis leidyi

PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e24065 ◽  
Author(s):  
Cornelia Jaspers ◽  
Lene Friis Møller ◽  
Thomas Kiørboe
Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 57
Author(s):  
Cornelia Jaspers ◽  
Nicholas Bezio ◽  
Hans-Harald Hinrichsen

Global change has led to manifold changes of marine ecosystems and biodiversity world-wide. While it has been shown that certain jellyfish and comb jelly species have increased regionally, it remains to be investigated if this is a general trend or localized phenomenon. Especially for the economically important Baltic Sea, which is characterized by an extreme physical environmental gradient, this question has not been addressed to date. Here we present a detailed account of the gelatinous macro-zooplankton community including their physiological tolerance towards abiotic conditions and resulting distribution ranges in the Baltic. We show that the arrival and establishment of non-indigenous species has led to a rising importance of jellyfish and comb jellies in the Baltic. This accounts for the comb jelly Mnemiopsis leidyi, which was first observed in Northern Europe in 2005, as well as for the hydromedusae Blackfordia virginica, first sighted in 2014. Both species have been shown to attain high population densities with pronounced grazing impact in other invasive regions. Given the current and anticipated changes of the physical environment of the Baltic Sea, especially ongoing warming, amplification of their impact can be expected.


2011 ◽  
Vol 14 (2) ◽  
pp. 341-354 ◽  
Author(s):  
Maiju Lehtiniemi ◽  
Andreas Lehmann ◽  
Jamileh Javidpour ◽  
Kai Myrberg

2019 ◽  
Vol 127 ◽  
pp. 92-103 ◽  
Author(s):  
Jérôme Kaiser ◽  
Karen J. Wang ◽  
Derek Rott ◽  
Gaoyuan Li ◽  
Yinsui Zheng ◽  
...  

2019 ◽  
Vol 9 (16) ◽  
pp. 9225-9238 ◽  
Author(s):  
Francisco R. Barboza ◽  
Jonne Kotta ◽  
Florian Weinberger ◽  
Veijo Jormalainen ◽  
Patrik Kraufvelin ◽  
...  

2019 ◽  
Vol 62 (1) ◽  
pp. 31-42
Author(s):  
Katharina Romoth ◽  
Petra Nowak ◽  
Daniela Kempke ◽  
Anna Dietrich ◽  
Christian Porsche ◽  
...  

Abstract Over recent decades, the neophyte Fucus evanescens has extended eastwards along the salinity gradient within the Baltic Sea, indicating gradual adaptation to low salinity conditions. To find out whether F. evanescens can migrate further into the Baltic Sea and potentially become a competitor to the native F. vesiculosus, the acclimation potentials of different F. evanescens and F. vesiculosus populations were investigated with respect to habitat salinity. For both species, pigmentation, water content, and photosynthetic rate were measured under laboratory and field conditions. The instantaneous measurement data and incubation experiment did not show clear differences in the measured photosynthetic parameters between different salinity levels (6–20), or between species. Maximum likelihood phylogenetic analyses of the nuclear marker PDI (a putative protein disulfide isomerase) separated F. vesiculosus and F. evanescens into well-defined groups supporting the hypothesis that the two very similar species do not represent different morphotypes of the same species/gene pool. These findings indicate that – at least for the vegetative stage of F. evanescens – salinity may not be a limiting factor for a further spread into the Baltic Sea.


2014 ◽  
Vol 37 (8) ◽  
pp. 601-604 ◽  
Author(s):  
Daniel P.R. Herlemann ◽  
Jana Woelk ◽  
Matthias Labrenz ◽  
Klaus Jürgens

2010 ◽  
Vol 7 (8) ◽  
pp. 2489-2508 ◽  
Author(s):  
J. Gelting ◽  
E. Breitbarth ◽  
B. Stolpe ◽  
M. Hassellöv ◽  
J. Ingri

Abstract. To indentify sources and transport mechanisms of iron in a coastal marine environment, we conducted measurements of the physiochemical speciation of Fe in the euphotic zone at three different locations in the Baltic Sea. In addition to sampling across a salinity gradient, we conducted this study over the spring and summer season. Moving from the riverine input characterized low salinity Bothnian Sea, via the Landsort Deep near Stockholm, towards the Gotland Deep in the Baltic Proper, total Fe concentrations averaged 114, 44, and 15 nM, respectively. At all three locations, a decrease in total Fe of 80–90% from early spring to summer was observed. Particulate Fe (PFe) was the dominating phase at all stations and accounted for 75–85% of the total Fe pool on average. The Fe isotope composition (δ 56Fe) of the PFe showed constant positive values in the Bothnian Sea surface waters (+0.08 to +0.20‰). Enrichment of heavy Fe in the Bothnian Sea PFe is possibly associated to input of aggregated land derived Fe-oxyhydroxides and oxidation of dissolved Fe(II). At the Landsort Deep the isotopic fractionation of PFe changed between −0.08‰ to +0.28‰ over the sampling period. The negative values in early spring indicate transport of PFe from the oxic-anoxic boundary at ∼80 m depth. The average colloidal iron fraction (CFe) showed decreasing concentrations along the salinity gradient; Bothnian Sea 15 nM; Landsort Deep 1 nM, and Gotland Deep 0.5 nM. Field Flow Fractionation data indicate that the main colloidal carrier phase for Fe in the Baltic Sea is a carbon-rich fulvic acid associated compound, likely of riverine origin. A strong positive correlation between PFe and chl-a indicates that cycling of suspended Fe is at least partially controlled by primary production. However, this relationship may not be dominated by active uptake of Fe into phytoplankton, but instead may reflect scavenging and removal of PFe during phytoplankton sedimentation.


Sign in / Sign up

Export Citation Format

Share Document