scholarly journals Diversity and Physiological Tolerance of Native and Invasive Jellyfish/Ctenophores along the Extreme Salinity Gradient of the Baltic Sea

Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 57
Author(s):  
Cornelia Jaspers ◽  
Nicholas Bezio ◽  
Hans-Harald Hinrichsen

Global change has led to manifold changes of marine ecosystems and biodiversity world-wide. While it has been shown that certain jellyfish and comb jelly species have increased regionally, it remains to be investigated if this is a general trend or localized phenomenon. Especially for the economically important Baltic Sea, which is characterized by an extreme physical environmental gradient, this question has not been addressed to date. Here we present a detailed account of the gelatinous macro-zooplankton community including their physiological tolerance towards abiotic conditions and resulting distribution ranges in the Baltic. We show that the arrival and establishment of non-indigenous species has led to a rising importance of jellyfish and comb jellies in the Baltic. This accounts for the comb jelly Mnemiopsis leidyi, which was first observed in Northern Europe in 2005, as well as for the hydromedusae Blackfordia virginica, first sighted in 2014. Both species have been shown to attain high population densities with pronounced grazing impact in other invasive regions. Given the current and anticipated changes of the physical environment of the Baltic Sea, especially ongoing warming, amplification of their impact can be expected.

2011 ◽  
Vol 14 (2) ◽  
pp. 341-354 ◽  
Author(s):  
Maiju Lehtiniemi ◽  
Andreas Lehmann ◽  
Jamileh Javidpour ◽  
Kai Myrberg

Author(s):  
Henn Ojaveer ◽  
Jonne Kotta ◽  
Okko Outinen ◽  
Heli Einberg ◽  
Anastasija Zaiko ◽  
...  

2019 ◽  
Vol 127 ◽  
pp. 92-103 ◽  
Author(s):  
Jérôme Kaiser ◽  
Karen J. Wang ◽  
Derek Rott ◽  
Gaoyuan Li ◽  
Yinsui Zheng ◽  
...  

2021 ◽  
Author(s):  
Marcus Reckermann ◽  
Anders Omstedt ◽  
Tarmo Soomere ◽  
Juris Aigars ◽  
Naveed Akhtar ◽  
...  

Abstract. Coastal environments, in particular heavily populated semi-enclosed marginal seas and coasts like the Baltic Sea region, are stongly affected by human activities. A multitude of human impacts, including climate change, affects the different compartments of the environment, and these effects interact with each other. As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region, and their interrelations. Some are naturally occurring and modified by human activities (i.e. climate change, coastal processes, hypoxia, acidification, submarine groundwater discharges, marine ecosystems, non-indigenous species, land use and land cover), some are completely human-induced (i.e. agriculture, aquaculture, fisheries, river regulations, offshore wind farms, shipping, chemical contamination, dumped warfare agents, marine litter and microplastics, tourism, coastal management), and they are all interrelated to different degrees. We present a general description and analysis of the state of knowledge on these interrelations. Our main insight is that climate change has an overarching, integrating impact on all of the other factors and can be interpreted as a background effect, which has different implications for the other factors. Impacts on the environment and the human sphere can be roughly allocated to anthropogenic drivers such as food production, energy production, transport, industry and economy. We conclude that a sound management and regulation of human activities must be implemented in order to use and keep the environments and ecosystems of the Baltic Sea region sustainably in a good shape. This must balance the human needs, which exert tremendous pressures on the systems, as humans are the overwhelming driving force for almost all changes we see. The findings from this inventory of available information and analysis of the different factors and their interactions in the Baltic Sea region can largely be transferred to other comparable marginal and coastal seas in the world.


2019 ◽  
Vol 9 (16) ◽  
pp. 9225-9238 ◽  
Author(s):  
Francisco R. Barboza ◽  
Jonne Kotta ◽  
Florian Weinberger ◽  
Veijo Jormalainen ◽  
Patrik Kraufvelin ◽  
...  

2019 ◽  
Vol 62 (1) ◽  
pp. 31-42
Author(s):  
Katharina Romoth ◽  
Petra Nowak ◽  
Daniela Kempke ◽  
Anna Dietrich ◽  
Christian Porsche ◽  
...  

Abstract Over recent decades, the neophyte Fucus evanescens has extended eastwards along the salinity gradient within the Baltic Sea, indicating gradual adaptation to low salinity conditions. To find out whether F. evanescens can migrate further into the Baltic Sea and potentially become a competitor to the native F. vesiculosus, the acclimation potentials of different F. evanescens and F. vesiculosus populations were investigated with respect to habitat salinity. For both species, pigmentation, water content, and photosynthetic rate were measured under laboratory and field conditions. The instantaneous measurement data and incubation experiment did not show clear differences in the measured photosynthetic parameters between different salinity levels (6–20), or between species. Maximum likelihood phylogenetic analyses of the nuclear marker PDI (a putative protein disulfide isomerase) separated F. vesiculosus and F. evanescens into well-defined groups supporting the hypothesis that the two very similar species do not represent different morphotypes of the same species/gene pool. These findings indicate that – at least for the vegetative stage of F. evanescens – salinity may not be a limiting factor for a further spread into the Baltic Sea.


2014 ◽  
Vol 37 (8) ◽  
pp. 601-604 ◽  
Author(s):  
Daniel P.R. Herlemann ◽  
Jana Woelk ◽  
Matthias Labrenz ◽  
Klaus Jürgens

Sign in / Sign up

Export Citation Format

Share Document