scholarly journals Relationship between Reproductive Allocation and Relative Abundance among 32 Species of a Tibetan Alpine Meadow: Effects of Fertilization and Grazing

PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e35448 ◽  
Author(s):  
Kechang Niu ◽  
Bernhard Schmid ◽  
Philippe Choler ◽  
Guozhen Du
2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaoli Hu ◽  
Wenlong Zhou ◽  
Xiaonuo Li ◽  
Karl J. Niklas ◽  
Shucun Sun

Climate warming exerts profound effects on plant community composition. However, responses to climate warming are often reported at the community and functional type levels, but not at the species level. To test whether warming-induced changes are consistent among community, functional type, and species levels, we examined the warming-induced changes at different levels in an alpine meadow from 2015 to 2018. The warming was achieved by deploying six (open top) chambers [including three non-warmed chambers and three warmed chambers; 15 × 15 × 2.5 m (height) for each] that resulted in a small increase in mean annual temperature (0.3–0.5°C, varying with years) with a higher increase during the non-growing season (0.4–0.6°C) than in the growing season (0.03–0.47°C). The results show that warming increased plant aboveground biomass but did not change species richness, or Shannon diversity and evenness at the community level. At the functional type level, warming increased the relative abundance of grasses from 3 to 16%, but decreased the relative abundance of forbs from 89 to 79%; relative abundances of sedges and legumes were unchanged. However, for a given functional type, warming could result in contrasting effects on the relative abundance among species, e.g., the abundances of the forb species Geranium pylzowianum, Potentilla anserine, Euphrasia pectinate, and the sedge species Carex atrofusca increased in the warmed (compared to the non-warmed) chambers. More importantly, the difference in species identity between warmed and non-warmed chambers revealed warming-induced species loss. Specifically, four forb species were lost in both types of chambers, one additional forb species (Angelica apaensis) was lost in the non-warmed chambers, and two additional species (one forb species Saussurea stella and one sedge species Blysmus sinocompressus) were lost in the warmed chambers. Consequently, changes at the species level could not be deduced from the results at the community or functional type levels. These data indicate that species-level responses to climate changes must be more intensively studied. This work also highlights the importance of examining species identity (and not only species number) to study changes of community composition in response to climate warming.


2006 ◽  
Vol 30 (5) ◽  
pp. 817-826 ◽  
Author(s):  
NIU Ke-Chang ◽  
◽  
ZHAO Zhi-Gang ◽  
LUO Yan-Jiang ◽  
DU Guo-Zhen

2020 ◽  
Author(s):  
Xiang Liu ◽  
Li Zhang ◽  
Mengjiao Huang ◽  
Shurong Zhou

Abstract Aims The effects of fertilization on fungal plant pathogens in agricultural soils have been studied extensively. However, we know little about how fertilization affects the relative abundance and richness of soil fungal plant pathogens in natural ecosystems, either through altering the soil properties or plant community composition. Methods Here, we used data from a seven-year nitrogen (N) addition experiment in an alpine meadow on the Qinghai-Tibetan Plateau to test how N addition affects the relative abundance and richness of soil fungal plant pathogens, as determined using Miseq sequencing of ITS1 gene biomarkers. We also evaluated the relative importance of changes in soil properties versus plant species diversity under N addition. Important Findings Using general linear model selection and a piecewise structural equation model, we found that N addition increased the relative abundance of soil fungal plant pathogens by significantly altering soil properties. However, higher host plant species richness led to higher soil fungal plant pathogen richness, even after excluding the effects of N addition. We conclude that the relative abundance and richness of soil fungal plant pathogens are regulated by different mechanisms in the alpine meadow. Continuous worldwide N inputs (through both fertilizer use and nitrogen deposition) not only cause species losses via altered plant species interactions, but also produce changes in soil properties that result in more abundant soil fungal plant pathogens. This increase in pathogen relative abundance may seriously threaten ecosystem health, thus interrupting important ecosystem functions and services.


2013 ◽  
Vol 7 (3) ◽  
pp. 231-239 ◽  
Author(s):  
Z. Zhang ◽  
K. Niu ◽  
X. Liu ◽  
P. Jia ◽  
G. Du

Evolution ◽  
2005 ◽  
Vol 59 (12) ◽  
pp. 2639 ◽  
Author(s):  
Merrill A. Peterson ◽  
Barbara M. Honchak ◽  
Stefanie E. Locke ◽  
Timothy E. Beeman ◽  
Jessica Mendoza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document