scholarly journals Interactive Effects of Ocean Acidification and Nitrogen-Limitation on the Diatom Phaeodactylum tricornutum

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51590 ◽  
Author(s):  
Wei Li ◽  
Kunshan Gao ◽  
John Beardall
2015 ◽  
Vol 12 (8) ◽  
pp. 2383-2393 ◽  
Author(s):  
W. Li ◽  
K. Gao ◽  
J. Beardall

Abstract. It has been proposed that ocean acidification (OA) will interact with other environmental factors to influence the overall impact of global change on biological systems. Accordingly we investigated the influence of nitrogen limitation and OA on the physiology of diatoms by growing the diatom Phaeodactylum tricornutum Bohlin under elevated (1000 μatm; high CO2 – HC) or ambient (390 μatm; low CO2 – LC) levels of CO2 with replete (110 μmol L−1; high nitrate – HN) or reduced (10 μmol L−1; low nitrate – LN) levels of NO3- and subjecting the cells to solar radiation with or without UV irradiance to determine their susceptibility to UV radiation (UVR, 280–400 nm). Our results indicate that OA and UVB induced significantly higher inhibition of both the photosynthetic rate and quantum yield under LN than under HN conditions. UVA or/and UVB increased the cells' non-photochemical quenching (NPQ) regardless of the CO2 levels. Under LN and OA conditions, activity of superoxide dismutase and catalase activities were enhanced, along with the highest sensitivity to UVB and the lowest ratio of repair to damage of PSII. HC-grown cells showed a faster recovery rate of yield under HN but not under LN conditions. We conclude therefore that nutrient limitation makes cells more prone to the deleterious effects of UV radiation and that HC conditions (ocean acidification) exacerbate this effect. The finding that nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance of the diatom P. tricornutum implies that ocean primary production and the marine biological C pump will be affected by OA under multiple stressors.


2014 ◽  
Vol 11 (12) ◽  
pp. 17675-17706 ◽  
Author(s):  
W. Li ◽  
K. Gao ◽  
J. Beardall

Abstract. It has been proposed that ocean acidification (OA) will interact with other environmental factors to influence the overall impact of global change on biological systems. Accordingly we investigated the influence of nitrogen limitation and OA on the physiology of diatoms by growing the diatom Phaeodactylum tricornutum Bohlin under elevated (1000 μatm, HC) or ambient (390 μatm, LC) levels of CO2 with replete (110 μmol L-1, HN) or reduced (10 μmol L-1, LN) levels of NO3- and subjecting the cells to solar radiation with or without UV irradiance to determine their susceptibility to UV radiation (280–400 nm). Our results indicate that OA and UVB induced significantly higher inhibition of both the photosynthetic rate and quantum yield under LN than under HN conditions. UVA or/and UVB increased the cells' non-photochemical quenching (NPQ) regardless of the CO2 levels. Under LN and OA conditions, activity of superoxide dismutase and catalase activities were enhanced, along with the highest sensitivity to UVB and the lowest ratio of repair to damage of PSII. HC-grown cells showed a faster recovery rate of yield under HN but not under LN conditions. The finding that nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance of the diatom P. tricornutum implies that ocean primary production and the marine biological C pump will be affected by the OA under multiple stressors.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259506
Author(s):  
Manoj Kamalanathan ◽  
Jessica Hillhouse ◽  
Noah Claflin ◽  
Talia Rodkey ◽  
Andrew Mondragon ◽  
...  

Phytoplankton play a central role in our ecosystems, they are responsible for nearly 50 percent of the global primary productivity and major drivers of macro-elemental cycles in the ocean. Phytoplankton are constantly subjected to stressors, some natural such as nutrient limitation and some manmade such as oil spills. With increasing oil exploration activities in coastal zones in the Gulf of Mexico and elsewhere, an oil spill during nutrient-limited conditions for phytoplankton growth is highly likely. We performed a multifactorial study exposing the diatom Phaeodactylum tricornutum (UTEX 646) to oil and/or dispersants under nitrogen and silica limitation as well as co-limitation of both nutrients. Our study found that treatments with nitrogen limitation (-N and–N-Si) showed overall lower growth and chlorophyll a, lower photosynthetic antennae size, lower maximum photosynthetic efficiency, lower protein in exopolymeric substance (EPS), but higher connectivity between photosystems compared to non-nitrogen limited treatments (-Si and +N+Si) in almost all the conditions with oil and/or dispersants. However, certain combinations of nutrient limitation and oil and/or dispersant differed from this trend indicating strong interactive effects. When analyzed for significant interactive effects, the–N treatment impact on cellular growth in oil and oil plus dispersant conditions; and oil and oil plus dispersant conditions on cellular growth in–N-Si and–N treatments were found to be significant. Overall, we demonstrate that nitrogen limitation can affect the oil resistant trait of P. tricornutum, and oil with and without dispersants can have interactive effects with nutrient limitation on this diatom.


2016 ◽  
Vol 543 ◽  
pp. 127-140 ◽  
Author(s):  
T Eberlein ◽  
DB Van de Waal ◽  
KM Brandenburg ◽  
U John ◽  
M Voss ◽  
...  

2018 ◽  
Vol 35 ◽  
pp. 33-49 ◽  
Author(s):  
Ilse M. Remmers ◽  
Sarah D'Adamo ◽  
Dirk E. Martens ◽  
Ric C.H. de Vos ◽  
Roland Mumm ◽  
...  

2019 ◽  
Vol 49 (13-14) ◽  
pp. 1015-1021
Author(s):  
Veronika A. Franzova ◽  
Colin D. MacLeod ◽  
Tianxin Wang ◽  
Christopher D.G. Harley

2015 ◽  
Vol 61 (4) ◽  
pp. 653-668 ◽  
Author(s):  
Anna V. Ivanina ◽  
Inna M. Sokolova

Abstract Changes in the global environment such as ocean acidification (OA) may interact with anthropogenic pollutants including trace metals threatening the integrity of marine ecosystems. We analyze recent studies on the interactive effects of OA and trace metals on marine organisms with a focus on the physiological basis of these interactions. Our analysis shows that the responses to elevated CO2 and metals are strongly dependent on the species, developmental stage, metal biochemistry and the degree of environmental hypercapnia, and cannot be directly predicted from the CO2-induced changes in metal solubility and speciation. The key physiological functions affected by both the OA and trace metal exposures involve acid-base regulation, protein turnover and mitochondrial bioenergetics, reflecting the sensitivity of the underlying molecular and cellular pathways to CO2and metals. Physiological interactions between elevated CO2 and metals may impact the organisms’ capacity to maintain acid-base homeostasis and reduce the amount of energy available for fitness-related functions such as growth, development and reproduction thereby affecting survival and performance of estuarine populations. Environmental hypercapnia may also affect the marine food webs by altering predator-prey interactions and the trophic transfer of metals in the food chain. However, our understanding of the degree to which these effects can impact the function and integrity of marine ecosystems is limited due the scarcity of the published research and its bias towards certain taxonomic groups. Future research priorities should include studies of metal x PCO2 interactions focusing on critical physiological functions (including acid-base, protein and energy homeostasis) in a greater range of ecologically and economically important marine species, as well as including the field populations naturally exposed (and potentially adapted) to different levels of metals and CO2 in their environments.


Sign in / Sign up

Export Citation Format

Share Document