Interactive effects of parasitic infection and ocean acidification on the calcification of a marine gastropod

2015 ◽  
Vol 537 ◽  
pp. 137-150 ◽  
Author(s):  
CD MacLeod ◽  
R Poulin
Parasitology ◽  
2016 ◽  
Vol 143 (11) ◽  
pp. 1397-1408 ◽  
Author(s):  
C. D. MACLEOD ◽  
R. POULIN

SUMMARYIncreased hydrogen ion concentration and decreased carbonate ion concentration in seawater are the most physiologically relevant consequences of ocean acidification (OA). Changes to either chemical species may increase the metabolic cost of physiological processes in marine organisms, and reduce the energy available for growth, reproduction and survival. Parasitic infection also increases the energetic demands experienced by marine organisms, and may reduce host tolerance to stressors associated with OA. This study assessed the combined metabolic effects of parasitic infection and OA on an intertidal gastropod,Zeacumantus subcarinatus. Oxygen consumption rates and tissue glucose content were recorded in snails infected with one of three trematode parasites, and an uninfected control group, maintained in acidified (7·6 and 7·4 pH) or unmodified (8·1 pH) seawater. Exposure to acidified seawater significantly altered the oxygen consumption rates and tissue glucose content of infected and uninfected snails, and there were clear differences in the magnitude of these changes between snails infected with different species of trematode. These results indicate that the combined effects of OA and parasitic infection significantly alter the energy requirements ofZ. subcarinatus, and that the species of the infecting parasite may play an important role in determining the tolerance of marine gastropods to OA.


2019 ◽  
Vol 49 (13-14) ◽  
pp. 1015-1021
Author(s):  
Veronika A. Franzova ◽  
Colin D. MacLeod ◽  
Tianxin Wang ◽  
Christopher D.G. Harley

2015 ◽  
Vol 61 (4) ◽  
pp. 653-668 ◽  
Author(s):  
Anna V. Ivanina ◽  
Inna M. Sokolova

Abstract Changes in the global environment such as ocean acidification (OA) may interact with anthropogenic pollutants including trace metals threatening the integrity of marine ecosystems. We analyze recent studies on the interactive effects of OA and trace metals on marine organisms with a focus on the physiological basis of these interactions. Our analysis shows that the responses to elevated CO2 and metals are strongly dependent on the species, developmental stage, metal biochemistry and the degree of environmental hypercapnia, and cannot be directly predicted from the CO2-induced changes in metal solubility and speciation. The key physiological functions affected by both the OA and trace metal exposures involve acid-base regulation, protein turnover and mitochondrial bioenergetics, reflecting the sensitivity of the underlying molecular and cellular pathways to CO2and metals. Physiological interactions between elevated CO2 and metals may impact the organisms’ capacity to maintain acid-base homeostasis and reduce the amount of energy available for fitness-related functions such as growth, development and reproduction thereby affecting survival and performance of estuarine populations. Environmental hypercapnia may also affect the marine food webs by altering predator-prey interactions and the trophic transfer of metals in the food chain. However, our understanding of the degree to which these effects can impact the function and integrity of marine ecosystems is limited due the scarcity of the published research and its bias towards certain taxonomic groups. Future research priorities should include studies of metal x PCO2 interactions focusing on critical physiological functions (including acid-base, protein and energy homeostasis) in a greater range of ecologically and economically important marine species, as well as including the field populations naturally exposed (and potentially adapted) to different levels of metals and CO2 in their environments.


Coral Reefs ◽  
2017 ◽  
Vol 36 (4) ◽  
pp. 1059-1070 ◽  
Author(s):  
Maggie D. Johnson ◽  
Steeve Comeau ◽  
Coulson A. Lantz ◽  
Jennifer E. Smith

2013 ◽  
Vol 368 (1627) ◽  
pp. 20130186 ◽  
Author(s):  
Jasmin A. Godbold ◽  
Martin Solan

Warming of sea surface temperatures and alteration of ocean chemistry associated with anthropogenic increases in atmospheric carbon dioxide will have profound consequences for a broad range of species, but the potential for seasonal variation to modify species and ecosystem responses to these stressors has received little attention. Here, using the longest experiment to date (542 days), we investigate how the interactive effects of warming and ocean acidification affect the growth, behaviour and associated levels of ecosystem functioning (nutrient release) for a functionally important non-calcifying intertidal polychaete ( Alitta virens ) under seasonally changing conditions. We find that the effects of warming, ocean acidification and their interactions are not detectable in the short term, but manifest over time through changes in growth, bioturbation and bioirrigation behaviour that, in turn, affect nutrient generation. These changes are intimately linked to species responses to seasonal variations in environmental conditions (temperature and photoperiod) that, depending upon timing, can either exacerbate or buffer the long-term directional effects of climatic forcing. Taken together, our observations caution against over emphasizing the conclusions from short-term experiments and highlight the necessity to consider the temporal expression of complex system dynamics established over appropriate timescales when forecasting the likely ecological consequences of climatic forcing.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7048 ◽  
Author(s):  
Furong Yue ◽  
Guang Gao ◽  
Jing Ma ◽  
Hailong Wu ◽  
Xinshu Li ◽  
...  

Photoperiods have an important impact on macroalgae living in the intertidal zone. Ocean acidification also influences the physiology of macroalgae. However, little is known about the interaction between ocean acidification and photoperiod on macroalgae. In this study, a green alga Ulva linza was cultured under three different photoperiods (L: D = 8:16, 12:12, 16:8) and two different CO2 levels (LC, 400 ppm; HC, 1,000 ppm) to investigate their responses. The results showed that relative growth rate of U. linza increased with extended light periods under LC but decreased at HC when exposed to the longest light period of 16 h compared to 12 h. Higher CO2 levels enhanced the relative growth rate at a L: D of 8:16, had no effect at 12:12 but reduced RGR at 16:8. At LC, the L: D of 16:8 significantly stimulated maximum quantum yield (Yield). Higher CO2 levels enhanced Yield at L: D of 12:12 and 8:16, had negative effect at 16:8. Non-photochemical quenching (NPQ) increased with increasing light period. High CO2 levels did not affect respiration rate during shorter light periods but enhanced it at a light period of 16 h. Longer light periods had negative effects on Chl a and Chl b content, and high CO2 level also inhibited the synthesis of these pigments. Our data demonstrate the interactive effects of CO2 and photoperiod on the physiological characteristics of the green tide macroalga Ulva linza and indicate that future ocean acidification may hinder the stimulatory effect of long light periods on growth of Ulva species.


2021 ◽  
Author(s):  
◽  
Malindi Gammon

<p>Calcifying corals provide important habitat complexity in the deep-sea and are consistently associated with a biodiversity of fish and other invertebrates. Little is understood about how deep-sea corals may respond to predicted scenarios of ocean acidification (OA), but any predicted changes will have wider impacts on the ecosystem.   Colonies of Solenosmilia variabilis, a species of deep-sea coral found in the waters surrounding New Zealand, were collected during a cruise in March 2014 from the Louisville Seamount chain. Over 12-months, coral samples were maintained in temperature controlled (~3.5°C) continuous flow-through tanks. A control group of coral colonies was held in seawater with pH 7.88 and a treatment group in pH 7.65. These two pH levels were designed to reflect current pH conditions and end-of-century conditions, respectively. In addition to investigating changes in growth and morphology, measurements of respiration and intracellular pH (pHi) were taken after a mid-term (6 months for respiration; 9 months for pHi) and long-term (12 months for both respiration and pHi) exposure period. An established method used in measuring the pHi of shallow water corals was adapted for use with deep-sea corals for the first time. pHi was independent from the seawater treatment and ranged from 7.67 – 8.30. Respiration rate was not influenced by the reduced seawater pH tested here. Respiration rates were highly variable, ranging from 0.065 to 1.756 μg O2 g-1 protein h-1 and pHi ranged from 7.67 – 8.30. Yearly growth rates were also variable, ranging from 0.53 to 3.068 mm year-1, and again showed no detectable difference between the treatment and control colonies. However, a loss in the colouration of coral skeletons was observed in the treatment group and was attributed to a loss of tissue. This could indicate a reallocation of energy, allowing for the maintenance of those other physiological parameters measured here (e.g. growth and respiration rates). If this is indeed occurring, it would be consistent with the idea of phenotypic plasticity, where corals can alternate between soft-bodied and fossilizing forms, allowing them to survive past periods of environmental stress.   This research is an important first step towards understanding the sensitivity of deep-sea corals to OA and the potential for acclimation, and suggests that in many respects, S. variabilis might not be susceptible to end-of-century projections of OA. Nevertheless, the observed tissue loss is interesting and warrants further investigation to assess its long-term implications. Furthermore, the impacts of greater levels of OA, and the interactive effects of other ecological parameters such as food availability, need to be tested.</p>


Sign in / Sign up

Export Citation Format

Share Document