scholarly journals Trans-Generational Effects of Mild Heat Stress on the Life History Traits of an Aphid Parasitoid

PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e54306 ◽  
Author(s):  
Ibrahim Ismaeil ◽  
Géraldine Doury ◽  
Emmanuel Desouhant ◽  
Françoise Dubois ◽  
Geneviève Prevost ◽  
...  
2020 ◽  
Vol 121 ◽  
pp. 104001 ◽  
Author(s):  
K. Tougeron ◽  
M. Devogel ◽  
J. van Baaren ◽  
C. Le Lann ◽  
T. Hance

2020 ◽  
Vol 8 (11) ◽  
pp. 1781
Author(s):  
Samuel Slowinski ◽  
Isabella Ramirez ◽  
Vivek Narayan ◽  
Medha Somayaji ◽  
Maya Para ◽  
...  

Animals and plants host diverse communities of microorganisms, and these microbiotas have been shown to influence host life history traits. Much has been said about the benefits that host-associated microbiotas bestow on the host. However, life history traits often demonstrate tradeoffs among one another. Raising Caenorhabditis elegans nematodes in compost microcosms emulating their natural environment, we examined how complex microbiotas affect host life history traits. We show that soil microbes usually increase the host development rate but decrease host resistance to heat stress, suggesting that interactions with complex microbiotas may mediate a tradeoff between host development and stress resistance. What element in these interactions is responsible for these effects is yet unknown, but experiments with live versus dead bacteria suggest that such effects may depend on bacterially provided signals.


2017 ◽  
Vol 102 ◽  
pp. 36-41 ◽  
Author(s):  
Jincheng Zheng ◽  
Xiongbin Cheng ◽  
Ary A. Hoffmann ◽  
Bo Zhang ◽  
Chun-Sen Ma

2009 ◽  
Vol 100 (1) ◽  
pp. 9-17 ◽  
Author(s):  
M.-P. Chapuis ◽  
L. Crespin ◽  
A. Estoup ◽  
A. Augé-Sabatier ◽  
A. Foucart ◽  
...  

AbstractParental environments could play an important role in controlling insect outbreaks, provided they influence changes in physiological, developmental or behavioural life-history traits related to fluctuations in population density. However, the potential implication of parental influence in density-related changes in life-history traits remains unclear in many insects that exhibit fluctuating population dynamics, particularly locusts. In this study, we report a laboratory experiment, which enabled us to characterize the life-history trait modifications induced by parental crowding of female individuals from a frequently outbreaking population ofLocusta migratoria(Linnaeus) (Orthoptera: Acrididae). We found that a rearing history of crowding led to reduced female oviposition times and increased offspring size but did not affect the developmental time, survival, fecundity, and the sex-ratio and the number of offspring. Because all studied females were raised in a common environment (isolation conditions), these observed reproductive differences are due to trans-generational effects induced by density. We discuss the ecological and evolutionary implications of the observed density-dependent parental effects on the life-history ofL. migratoria.


Dose-Response ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 155932582098321
Author(s):  
Tamara M. Fuciarelli ◽  
C. David Rollo

Animals exposed to significant stress express multi-modal responses to buffer negative impacts. Trans-generational impacts have been mainly studied in maternal lines, with paternal lines having received less attention. Here, we assessed paternal generational effects using irradiated male crickets ( Acheta domesticus), and their F1 offspring (irradiated males mated to unirradiated females). Paternal transmission of radiation impacts emerged in multiple life history traits when compared to controls. Irradiated males and their F1 offspring expressed hormetic responses in survivorship and median longevity at mid-range doses. For F0 males, 7 Gy & 10 Gy doses extended F0 longevity by 39% and 34.2% respectively. F1 offspring of 7 Gy and 10 Gy sires had median lifespans 71.3% and 110.9% longer, respectively. Survivorship for both F0 7 Gy (p < 0.0001) and 10 Gy (p = 0.0055) males and F1 7 Gy and 10 Gy (p < 0.0001) offspring significantly surpassed that of controls. Irradiated F0 males and F1 offspring had significantly reduced growth rates. For F0 males, significant reductions were evident in 4Gy-12 Gy males and F1 offspring in 4 Gy (p < 0.0001), 7 Gy (p < 0.0001), and 10 Gy (p = 0.017). Our results indicate paternal effects; that irradiation directly impacted males but also mediated diverse alterations in the life history features (particularly longevity and survivorship) of F1 offspring.


2010 ◽  
Vol 100 (5) ◽  
pp. 543-549 ◽  
Author(s):  
O. Roux ◽  
C. Le Lann ◽  
J. J. M. van Alphen ◽  
J. van Baaren

AbstractBecause insects are ectotherms, their physiology, behaviour and fitness are influenced by the ambient temperature. Any changes in environmental temperatures may impact the fitness and life history traits of insects and, thus, affect population dynamics. Here, we experimentally tested the impact of heat shock on the fitness and life history traits of adults of the aphid parasitoidAphidius avenaeand on the later repercussions for their progeny. Our results show that short exposure (1 h) to an elevated temperature (36°C), which is frequently experienced by parasitoids during the summer, resulted in high mortality rates in a parasitoid population and strongly affected the fitness of survivors by drastically reducing reproductive output and triggering a sex-dependent effect on lifespan. Heat stress resulted in greater longevity in surviving females and in shorter longevity in surviving males in comparison with untreated individuals. Viability and the developmental rates of progeny were also affected in a sex-dependent manner. These results underline the ecological importance of the thermal stress response of parasitoid species, not only for survival, but also for maintaining reproductive activities.


1992 ◽  
Vol 82 (4) ◽  
pp. 479-484 ◽  
Author(s):  
H. Haardt ◽  
C. Höller

AbstractSix isofemale lines of the aphid parasitoid Aphelinus abdominalis (Dalman) were compared for life history traits related to parasitism of three cereal aphid species. The lines differed most in the number of hosts parasitized in 24 h and the developmental times of females and males. Cluster and discriminant analysis showed that these differences were pronounced between line I, line II and lines III-VI, but not between lines III, IV, V and VI. Cross-breeding experiments revealed reproductive barriers between the lines which proved to differ most in life history traits, indicating the possible existence of morphologically similar species. Given the variability in life history traits between lines of A. abdominalis recorded in this study, we suggest a careful selection of candidate strains for biological control will be rewarding.


2020 ◽  
Author(s):  
Corentin Sochard ◽  
Laura Bellec ◽  
Jean-Christophe Simon ◽  
Yannick Outreman

Abstract Microbial associates are widespread in insects, some conferring a protection to their hosts against natural enemies like parasitoids. These protective symbionts may affect the infection success of the parasitoid by modifying behavioral defenses of their hosts, the development success of the parasitoid by conferring a resistance against it or by altering life-history traits of the emerging parasitoids. Here, we assessed the effects of different protective bacterial symbionts on the entire sequence of the host-parasitoid interaction (i.e., from parasitoid attack to offspring emergence) between the pea aphid, Acyrthosiphon pisum, and its main parasitoid, Aphidius ervi and their impacts on the life-history traits of the emerging parasitoids. To test whether symbiont-mediated phenotypes were general or specific to particular aphid–symbiont associations, we considered several aphid lineages, each harboring a different strain of either Hamiltonella defensa or Regiella insecticola, two protective symbionts commonly found in aphids. We found that symbiont species and strains had a weak effect on the ability of aphids to defend themselves against the parasitic wasps during the attack and a strong effect on aphid resistance against parasitoid development. While parasitism resistance was mainly determined by symbionts, their effects on host defensive behaviors varied largely from one aphid–symbiont association to another. Also, the symbiotic status of the aphid individuals had no impact on the attack rate of the parasitic wasps, the parasitoid emergence rate from parasitized aphids nor the life-history traits of the emerging parasitoids. Overall, no correlations between symbiont effects on the different stages of the host–parasitoid interaction was observed, suggesting no trade-offs or positive associations between symbiont-mediated phenotypes. Our study highlights the need to consider various sequences of the host-parasitoid interaction to better assess the outcomes of protective symbioses and understand the ecological and evolutionary dynamics of insect–symbiont associations.


2019 ◽  
Author(s):  
Tougeron K. ◽  
Devogel M. ◽  
van Baaren J. ◽  
Le Lann C. ◽  
Hance T.

SummaryTransgenerational effects act on a wide range of insects’ life-history traits and can be involved in the control of developmental plasticity, such as diapause expression. Decrease in or total loss of winter diapause expression recently observed in some species could arise from inhibiting maternal effects. In this study, we explored transgenerational effects on diapause expression and traits in one industrial and one wild strain of the aphid parasitoidAphidius ervi. These strains were reared under short photoperiod (8:16 h LD) and low temperature (14 °C) conditions over two generations. Diapause levels, developmental times, physiological and morphological traits were measured. Diapause levels increased after one generation in the wild but not in the industrial strain. For both strains, the second generation took longer to develop than the first one. Tibia length and wing surface decreased over generations while fat content increased. A crossed-generations experiment focusing on the industrial parasitoid strain showed that offspring from mothers reared at 14 °C took longer to develop, were heavier, taller with wider wings and with more fat reserves than those from mothers reared at 20 °C (8:16 h LD). No effect of the mother rearing conditions was shown on diapause expression. Additionally to direct plasticity of the offspring, results suggest transgenerational plasticity effects on diapause expression, development time, and on the values of life-history traits. We demonstrated that populations showing low diapause levels may recover higher levels through transgenerational plasticity in response to diapause-induction cues, provided that environmental conditions are reaching the induction-thresholds specific to each population. Transgenerational plasticity is thus important to consider when evaluating how insects adapt to changing environments.


Sign in / Sign up

Export Citation Format

Share Document