scholarly journals HIV Protease Inhibitors Disrupt Lipid Metabolism by Activating Endoplasmic Reticulum Stress and Inhibiting Autophagy Activity in Adipocytes

PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e59514 ◽  
Author(s):  
Beth S. Zha ◽  
Xiaoshan Wan ◽  
Xiaoxuan Zhang ◽  
Weibin Zha ◽  
Jun Zhou ◽  
...  
2006 ◽  
Vol 291 (6) ◽  
pp. G1071-G1080 ◽  
Author(s):  
Huiping Zhou ◽  
Emily C. Gurley ◽  
Sirikalaya Jarujaron ◽  
Hong Ding ◽  
Youwen Fang ◽  
...  

Treatment of human immunodeficiency virus (HIV)-infected patients with HIV protease inhibitors (PIs) has been associated with serious lipid disturbances. However, the incidence and degree of impaired lipid metabolism observed in the clinic vary considerably between individual HIV PIs. Our previous studies demonstrated that HIV PIs differ in their ability to increase the levels of transcriptionally active sterol regulatory element-binding proteins (SREBPs), activate the unfolded protein response (UPR), induce apoptosis, and promote foam cell formation in macrophages. In the present study, we examined the effects of three HIV PIs, including amprenavir, atazanavir, and ritonavir, on the UPR activation and the expression of key genes involved in lipid metabolism in primary rodent hepatocytes. Both atazanavir and ritonavir activated the UPR, induced apoptosis, and increased nuclear SREBP levels, but amprenavir had no significant effect at the same concentrations. In rat primary hepatocytes, cholesterol 7α-hydroxylase (CYP7A1) mRNA levels were significantly decreased by atazanavir (38%) and ritonavir (56%) but increased by amprenavir (90%); 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase mRNA levels were increased by amprenavir (23%) but not by ritonavir and atazanavir; low-density lipoprotein receptor mRNA was increased by atazanavir (20%) but not by amprenavir and ritonavir. Similar results were obtained in mouse primary hepatocytes. Atazanavir and ritonavir also decreased CYP7A1 protein levels and bile acid biosynthesis, while amprenavir had no significant effect. The current results may help provide a better understanding of the cellular mechanisms of HIV PI-induced dyslipidemia and also provide useful information to help predict clinical adverse effects in the development of new HIV PIs.


2002 ◽  
Vol 172 (1) ◽  
pp. 155-162 ◽  
Author(s):  
S Ranganathan ◽  
PA Kern

Treatment of HIV infection using protease inhibitors is frequently associated with lipodystrophy and impaired lipid and glucose metabolism. We examined the effect of saquinavir, one of the protease inhibitors, on lipid metabolism and glucose transport in cultured adipocytes. Saquinavir inhibited lipoprotein lipase (LPL) activity in 3T3-F442A and 3T3-L1 adipocytes. The inhibition of LPL was 81% at a concentration of 20 microg/ml. Another closely related drug, indinavir, had a small inhibitory effect. Saquinavir also inhibited the biosynthesis of lipids from [(14)C]-acetate. Saquinavir increased the lipolysis. Saquinavir had no significant effect on the cellular protein synthesis or protein content. Saquinavir increased the basal glucose transport threefold and decreased insulin-stimulated glucose transport by 35%. These studies suggest that some HIV protease inhibitors have direct effects on lipid and glucose metabolism. This inhibition of lipogenesis and glucose transport may explain some of the lipodystrophy, dyslipidemia and disturbed glucose metabolism with the clinical use of these drugs.


Sign in / Sign up

Export Citation Format

Share Document