scholarly journals First Evaluation after Implementation of a Quality Control System for the Second Line Drug Susceptibility Testing of Mycobacterium tuberculosis Joint Efforts in Low and High Incidence Countries

PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e76765 ◽  
Author(s):  
Doris Hillemann ◽  
Sven Hoffner ◽  
Daniela Cirillo ◽  
Francis Drobniewski ◽  
Elvira Richter ◽  
...  
2011 ◽  
Vol 55 (5) ◽  
pp. 2032-2041 ◽  
Author(s):  
Patricia J. Campbell ◽  
Glenn P. Morlock ◽  
R. David Sikes ◽  
Tracy L. Dalton ◽  
Beverly Metchock ◽  
...  

ABSTRACTThe emergence of multi- and extensively drug-resistant tuberculosis is a significant impediment to the control of this disease because treatment becomes more complex and costly. Reliable and timely drug susceptibility testing is critical to ensure that patients receive effective treatment and become noninfectious. Molecular methods can provide accurate and rapid drug susceptibility results. We used DNA sequencing to detect resistance to the first-line antituberculosis drugs isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB) and the second-line drugs amikacin (AMK), capreomycin (CAP), kanamycin (KAN), ciprofloxacin (CIP), and ofloxacin (OFX). Nine loci were sequenced:rpoB(for resistance to RIF),katGandinhA(INH),pncA(PZA),embB(EMB),gyrA(CIP and OFX), andrrs,eis, andtlyA(KAN, AMK, and CAP). A total of 314 clinicalMycobacterium tuberculosiscomplex isolates representing a variety of antibiotic resistance patterns, genotypes, and geographical origins were analyzed. The molecular data were compared to the phenotypic data and the accuracy values were calculated. Sensitivity and specificity values for the first-line drug loci were 97.1% and 93.6% forrpoB, 85.4% and 100% forkatG, 16.5% and 100% forinhA, 90.6% and 100% forkatGandinhAtogether, 84.6% and 85.8% forpncA, and 78.6% and 93.1% forembB. The values for the second-line drugs were also calculated. The size and scope of this study, in numbers of loci and isolates examined, and the phenotypic diversity of those isolates support the use of DNA sequencing to detect drug resistance in theM. tuberculosiscomplex. Further, the results can be used to design diagnostic tests utilizing other mutation detection technologies.


2013 ◽  
Vol 58 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Jongseok Lee ◽  
Derek T. Armstrong ◽  
Willy Ssengooba ◽  
Jeong-ae Park ◽  
Yeuni Yu ◽  
...  

ABSTRACTForMycobacterium tuberculosis, phenotypic methods for drug susceptibility testing of second-line drugs are poorly standardized and technically challenging. The Sensititre MYCOTB MIC plate (MYCOTB) is a microtiter plate containing lyophilized antibiotics and configured for determination of MICs to first- and second-line antituberculosis drugs. To evaluate the performance of MYCOTB forM. tuberculosisdrug susceptibility testing using the Middlebrook 7H10 agar proportion method (APM) as the comparator, we conducted a two-site study using archivedM. tuberculosisisolates from Uganda and the Republic of Korea. Thawed isolates were subcultured, and dilutions were inoculated into MYCOTB wells and onto 7H10 agar. MYCOTB results were read at days 7, 10, 14, and 21; APM results were read at 21 days. A total of 222 isolates provided results on both platforms. By APM, 106/222 (47.7%) of isolates were resistant to at least isoniazid and rifampin. Agreement between MYCOTB and APM with respect to susceptibility or resistance was ≥92% for 7 of 12 drugs when a strict definition was used and ≥96% for 10 of 12 drugs when agreement was defined by allowing a ± one-well range of dilutions around the APM critical concentration. For ethambutol, agreement was 80% to 81%. For moxifloxacin, agreement was 83% to 85%; incorporating existing DNA sequencing information for discrepant analysis raised agreement to 91% to 96%. For MYCOTB, the median time to plate interpretation was 10 days and interreader agreement was ≥95% for all drugs. MYCOTB provided reliable results forM. tuberculosissusceptibility testing of first- and second-line drugs except ethambutol, and results were available sooner than those determined by APM.


2016 ◽  
Vol 54 (12) ◽  
pp. 2963-2968 ◽  
Author(s):  
Koné Kaniga ◽  
Daniela M. Cirillo ◽  
Sven Hoffner ◽  
Nazir A. Ismail ◽  
Devinder Kaur ◽  
...  

Our objective was to establish reference MIC quality control (QC) ranges for drug susceptibility testing of antimycobacterials, including first-line agents, second-line injectables, fluoroquinolones, and World Health Organization category 5 drugs for multidrug-resistant tuberculosis using a 7H9 broth microdilution MIC method. A tier-2 reproducibility study was conducted in eight participating laboratories using Clinical Laboratory and Standards Institute (CLSI) guidelines. Three lots of custom-made frozen 96-well polystyrene microtiter plates were used and prepared with 2× prediluted drugs in 7H9 broth-oleic acid albumin dextrose catalase. The QC reference strain wasMycobacterium tuberculosisH37Rv. MIC frequency, mode, and geometric mean were calculated for each drug. QC ranges were derived based on predefined, strict CLSI criteria. Any data lying outside CLSI criteria resulted in exclusion of the entire laboratory data set. Data from one laboratory were excluded due to higher MIC values than other laboratories. QC ranges were established for 11 drugs: isoniazid (0.03 to 0.12 μg/ml), rifampin (0.03 to 0.25 μg/ml), ethambutol (0.25 to 2 μg/ml), levofloxacin (0.12 to 1 μg/ml), moxifloxacin (0.06 to 0.5 μg/ml), ofloxacin (0.25 to 2 μg/ml), amikacin (0.25 to 2 μg/ml), kanamycin (0.25 to 2 μg/ml), capreomycin (0.5 to 4 μg/ml), linezolid (0.25 to 2 μg/ml), and clofazimine (0.03 to 0.25 μg/ml). QC ranges could not be established for nicotinamide (pyrazinamide surrogate), prothionamide, or ethionamide, which were assay nonperformers. Using strict CLSI criteria, QC ranges against theM. tuberculosisH37Rv reference strain were established for the majority of commonly used antituberculosis drugs, with a convenient 7H9 broth microdilution MIC method suitable for use in resource-limited settings.


Sign in / Sign up

Export Citation Format

Share Document