scholarly journals The Genome Sequence of the Fungal Pathogen Fusarium virguliforme That Causes Sudden Death Syndrome in Soybean

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e81832 ◽  
Author(s):  
Subodh K. Srivastava ◽  
Xiaoqiu Huang ◽  
Hargeet K. Brar ◽  
Ahmad M. Fakhoury ◽  
Burton H. Bluhm ◽  
...  
2018 ◽  
Vol 131 (8) ◽  
pp. 1729-1740 ◽  
Author(s):  
Ruijuan Tan ◽  
Bradley Serven ◽  
Paul J. Collins ◽  
Zhongnan Zhang ◽  
Zixiang Wen ◽  
...  

2018 ◽  
Vol 19 (1) ◽  
pp. 46-53 ◽  
Author(s):  
David A. Marburger ◽  
Jaime F. Willbur ◽  
Maria E. Weber ◽  
Jean-Michel Ané ◽  
Medhi Kabbage ◽  
...  

Lipo-chitooligosaccharides (LCOs) are signal molecules produced by plant root endosymbionts and have been identified, formulated, and marketed as growth-promoting adjuvants for soybean (Glycine max [L.] Merr.). Experiments were conducted under controlled environmental conditions to characterize the effects of foliar LCO applications on early symptom development of sudden death syndrome (SDS), caused by Fusarium virguliforme, and Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum. Treatment factors for the SDS experiment included two soybean cultivars (Sloan and CH2105R2), two inoculation levels (noninoculated control and inoculated), and two LCO applications (control and foliar LCO application), whereas two experimental soybean lines (91-38 and 91-44) and two LCO applications (water control and foliar LCO application) were used in the SSR experiment. The LCO application did not significantly influence SDS root symptom severity or early-season growth characteristics. However, on the susceptible line (P = 0.01) and with LCO application (P = 0.03), significantly larger SSR lesions developed compared with the nontreated control and resistant line. These results suggest foliar-applied LCOs have a limited effect on early root symptom development caused by F. virguliforme but increase stem symptom development caused by S. sclerotiorum.


PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e99529 ◽  
Author(s):  
Andreas Westphal ◽  
Chunge Li ◽  
Lijuan Xing ◽  
Alan McKay ◽  
Dean Malvick

2011 ◽  
Vol 101 (7) ◽  
pp. 878-886 ◽  
Author(s):  
Andreas Westphal ◽  
Lijuan Xing

The ecology of the complex of soybean cyst nematode (SCN) and sudden death syndrome (SDS) of soybean was investigated under soybean monoculture in two field experiments from 2003 to 2007. Initially, susceptible soybean ‘Spencer’ was planted while inoculating Fusarium virguliforme into nonfumigated or preseason-fumigated plots (methyl bromide, MB, at 450 kg/ha), and SCN and SDS were monitored. In one field, SCN population densities declined in nonfumigated but increased in fumigated plots. After years of limited SDS in 2003 and 2004, SDS developed later in nonfumigated than fumigated plots. In 2006 in the greenhouse, nondisturbed or disturbed soil cores (10-cm diameter, 30-cm depth) from field plots received two two-level factors: (i) nonfumigated or fumigated (1,070 kg/ha MB); and (ii) noninoculated or inoculated with 9,000 second-stage juveniles of SCN. At harvest, nonfumigated cores from nonfumigated plots had fewer nematodes and less SDS regardless of disturbance or inoculation than the corresponding fumigated cores and any cores from fumigated plots. In the second field, SCN became detectable after 2003 during the monoculture in nonfumigated plots and lagged in fumigated plots; both treatments had low levels of SDS. Exploiting the suppressiveness of the first field could allow for biological control of SDS and SCN in soybean production.


2013 ◽  
Vol 93 (6) ◽  
pp. 1179-1185 ◽  
Author(s):  
W. D. Clark ◽  
M. H. Reyes-Valdes ◽  
J. Bond ◽  
S. K. Kantartzi

Clark, W. D., Reyes-Valdes, M. H., Bond, J. and Kantartzi, S. K. 2013. Performance of LS97-1610בSpencer’ soybean recombinant inbred line population segregating for resistance to Fusarium virguliforme . Can. J. Plant Sci. 93: 1179–1185. Sudden death syndrome (SDS) is a devastating disease in soybean which is caused by Fusarium virguliforme. Sudden death syndrome resistance is a quantitative trait; therefore, development of resistant varieties requires understanding of complex genetics and environmental effect. In this study, we aimed to characterize 94 F5:8 recombinant inbred (RI) lines derived from a cross between a resistant line for SDS, LS97-1610 and a susceptible cultivar, ‘Spencer’ and to identify sources of resistance. The RI lines were evaluated for their relative resistance (RR) to SDS along with the parents in four different environments; two years (2009 and 2010) and two locations (Carbondale and Valmeyer, IL). Analysis of variance revealed significant interactions between genotype and environment in each year of experimentation and in 2-yr combined data. Broad-sense heritability was estimated by ANOVA results, and it was moderate (61%). These results indicate that SDS resistance is partially unpredictable due to environmental influence. Ten RI were identified to have a RR with no significant differences from LS97-1610 and two of them had a RR lower than resistant parent. These stable RI across environments were used for further evaluation in breeding programs. Additionally, data obtained from field evaluation can be used in combination with molecular data to study the effect of quantitative trait loci (QTL) with the environment. The identification of common QTL across environments with consistent expression is the ultimate goal of every marker-assisted selection program.


2016 ◽  
Vol 29 (2) ◽  
pp. 96-108 ◽  
Author(s):  
Hao-Xun Chang ◽  
Leslie L. Domier ◽  
Osman Radwan ◽  
Craig R. Yendrek ◽  
Matthew E. Hudson ◽  
...  

Sudden death syndrome (SDS) of soybean is caused by a soilborne pathogen, Fusarium virguliforme. Phytotoxins produced by F. virguliforme are translocated from infected roots to leaves, in which they cause SDS foliar symptoms. In this study, additional putative phytotoxins of F. virguliforme were identified, including three secondary metabolites and 11 effectors. While citrinin, fusaric acid, and radicicol induced foliar chlorosis and wilting, Soybean mosaic virus (SMV)-mediated overexpression of F. virguliforme necrosis-inducing secreted protein 1 (FvNIS1) induced SDS foliar symptoms that mimicked the development of foliar symptoms in the field. The expression level of fvnis1 remained steady over time, although foliar symptoms were delayed compared with the expression levels. SMV::FvNIS1 also displayed genotype-specific toxicity to which 75 of 80 soybean cultivars were susceptible. Genome-wide association mapping further identified three single nucleotide polymorphisms at two loci, where three leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes were found. Culture filtrates of fvnis1 knockout mutants displayed a mild reduction in phytotoxicity, indicating that FvNIS1 is one of the phytotoxins responsible for SDS foliar symptoms and may contribute to the quantitative susceptibility of soybean by interacting with the LRR-RLK genes.


Plant Disease ◽  
2017 ◽  
Vol 101 (5) ◽  
pp. 712-719 ◽  
Author(s):  
N. A. Abdelsamad ◽  
J. Baumbach ◽  
M. K. Bhattacharyya ◽  
L. F. Leandro

High soil moisture usually favors soybean sudden death syndrome (SDS), caused by Fusarium virguliforme (Fv), but the effects of the duration of the flooding period and accompanying anaerobic conditions on the soybean-Fv interaction are not clear. Greenhouse studies were conducted using susceptible and resistant cultivars exposed to the following treatments: 3, 5, or 7 days of continuous flooding, repeated short-term flooding of 8 h/week for 3 weeks, and a no-flood check treatment. At 7, 14, and 21 days after flooding (DAF), seedlings in the no-flood, 3-day, and repeated short-term treatments showed the highest root rot and foliar symptom severity, whereas seedlings in the 7-day treatment showed the lowest severity. Fv inoculum density in soil was lowest in the 7-day flooding treatment. In a hydroponic system, the steady transcript levels of soybean defense genes and Fv candidate virulence genes were measured in response to different oxygen levels using qPCR. Fv-infected roots exposed to 12 h of anaerobic conditions showed down-regulation of the defense-related soybean genes Laccase, PR3, PR10, PAL, and CHS, and the Fv virulence genes pectate lyase (PL), and Fv homolog of the pisatin demethylase (PDA). Our study suggests that short-term flooding tends to increase SDS, while prolonged flooding negatively impacts SDS due to reduction of Fv density in soil. Moreover, anaerobic conditions down-regulate both soybean defense genes and Fv candidate virulence genes.


Sign in / Sign up

Export Citation Format

Share Document