scholarly journals RBS1, an RNA Binding Protein, Interacts with SPIN1 and Is Involved in Flowering Time Control in Rice

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e87258
Author(s):  
Yuhui Cai ◽  
Miguel E. Vega-Sánchez ◽  
Chan Ho Park ◽  
Maria Bellizzi ◽  
Zejian Guo ◽  
...  
2005 ◽  
Vol 32 (10) ◽  
pp. 923 ◽  
Author(s):  
Maria Svensson ◽  
Dan Lundh ◽  
Per Bergman ◽  
Abul Mandal

A gene (At4g20010) involved in regulating flowering time in Arabidopsis thaliana (L.) Heynh. was identified by promoter trap T-DNA tagging. Plants containing a T-DNA insert in the 3′-UTR of At4g20010 flowered later under both long- and short-day conditions compared with control plants. Histochemical assays of the mutant plants showed that the promoterless gus gene is expressed predominantly in the shoot apex, but it is also expressed in root tips, stem nodes and in the abscission zone of developing siliques. Measurement of endogenous gibberellin (GA) showed that bioactive GA4 levels in mutant plants were reduced compared with wild type (WT) plants. Like other known mutants defective in GA biosynthesis, the late-flowering phenotype observed in our T-DNA-tagged line could be largely repressed by application of exogenous GA3. The T-DNA-tagged gene At4g20010 encodes a previously uncharacterised protein belonging to the DUF731 family. Sequence analysis showed similarity to a single-stranded binding domain and to an RNA-binding protein of Chlamydomonas reinhardtii. Considering the above results (sequence similarity, mutant phenotype and level of endogenous GA), we propose that At4g20010 is an RNA-binding protein involved in regulating GA biosynthesis, possibly at the post-transcriptional level.


2021 ◽  
Author(s):  
Liangsheng Wang ◽  
Duorong Xu ◽  
Kristin Scharf ◽  
Wolfgang Frank ◽  
Dario Leister ◽  
...  

2019 ◽  
Vol 60 (9) ◽  
pp. 2040-2050 ◽  
Author(s):  
Alexander Steffen ◽  
Mareike Elgner ◽  
Dorothee Staiger

Abstract The timing of floral initiation is a tightly controlled process in plants. The circadian clock regulated glycine-rich RNA-binding protein (RBP) AtGRP7, a known regulator of splicing, was previously shown to regulate flowering time mainly by affecting the MADS-box repressor FLOWERING LOCUS C (FLC). Loss of AtGRP7 leads to elevated FLC expression and late flowering in the atgrp7-1 mutant. Here, we analyze genetic interactions of AtGRP7 with key regulators of the autonomous and the thermosensory pathway of floral induction. RNA interference- mediated reduction of the level of the paralogous AtGRP8 in atgrp7-1 further delays floral transition compared of with atgrp7-1. AtGRP7 acts in parallel to FCA, FPA and FLK in the branch of the autonomous pathway (AP) comprised of RBPs. It acts in the same branch as FLOWERING LOCUS D, and AtGRP7 loss-of-function mutants show elevated levels of dimethylated lysine 4 of histone H3, a mark for active transcription. In addition to its role in the AP, AtGRP7 acts in the thermosensory pathway of flowering time control by regulating alternative splicing of the floral repressor FLOWERING LOCUS M (FLM). Overexpression of AtGRP7 selectively favors the formation of the repressive isoform FLM-β. Our results suggest that the RBPs AtGRP7 and AtGRP8 influence MADS-Box transcription factors in at least two different pathways of flowering time control. This highlights the importance of RBPs to fine-tune the integration of varying cues into flowering time control and further strengthens the view that the different pathways, although genetically separable, constitute a tightly interwoven network to ensure plant reproductive success under changing environmental conditions.


2004 ◽  
Vol 32 (4) ◽  
pp. 565-566 ◽  
Author(s):  
G.G. Simpson ◽  
V. Quesada ◽  
I.R. Henderson ◽  
P.P. Dijkwel ◽  
R. Macknight ◽  
...  

Plants control their flowering time in order to ensure that they reproduce under favourable conditions. The components involved in this complex process have been identified using a molecular genetic approach in Arabidopsis and classified into genetically separable pathways. The autonomous pathway controls the level of mRNA encoding a floral repressor, FLC, and comprises three RNA-binding proteins, FCA, FPA and FLK. FCA interacts with the 3′-end RNA-processing factor FY to autoregulate its own expression post-transcriptionally and to control FLC. Other components of the autonomous pathway, FVE and FLD, regulate FLC epigenetically. This combination of epigenetic and post-transcriptional control gives precision to the control of FLC expression and flowering time.


2004 ◽  
Vol 16 (3) ◽  
pp. 731-740 ◽  
Author(s):  
Mi-Hye Lim ◽  
Joonki Kim ◽  
Youn-Sung Kim ◽  
Kyung-Sook Chung ◽  
Yeon-Hee Seo ◽  
...  

2007 ◽  
Vol 177 (4S) ◽  
pp. 78-79
Author(s):  
Lioudmila Sitnikova ◽  
Gary Mendese ◽  
Qin Lui ◽  
Bruce A. Woda ◽  
Di Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document