scholarly journals Ex Vivo Expanded Human Regulatory T Cells Delay Islet Allograft Rejection via Inhibiting Islet-Derived Monocyte Chemoattractant Protein-1 Production in CD34+ Stem Cells-Reconstituted NOD-scid IL2rγnull Mice

PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e90387 ◽  
Author(s):  
Fang Xiao ◽  
Liang Ma ◽  
Min Zhao ◽  
Guocai Huang ◽  
Vincenzo Mirenda ◽  
...  
2008 ◽  
Vol 31 (4) ◽  
pp. 25
Author(s):  
Douglas C Wu ◽  
Joanna Wieckiewicz ◽  
Kathryn J Wood

Background: Type 1 diabetes mellitus represents a significant burden on global healthcare. Pancreatic islet transplantation offers an effective means of controlling the disease, but shortage of donor tissue, graft thrombosis, and immunological rejection after transplantation remain obstacles that need to be overcome. Our aim was to assess the ability of ex vivo expanded human regulatory T cells (Treg) in modulating the rejection response against a human islet allograft in a clinically relevant model of human pancreatic islet transplantation. Methods: We studied the rejection response against allogeneic human islets in acohort of 32 immunodeficient mice which had been reconstituted with a functional human immune system. Thirteen subjects were transplanted with human islets without further immunological modification; graft survival was compared with that of thirteen subjects treated additionally with human regulatory T cells. Six controls were given a human islet transplant, but not reconstituted with human immune cells to demonstrate the functionality of the islet graft in the absence of immunological rejection. Graft function was assessed with serial blood glucose measurements, immunohistochemistry,immunoflourescence, and flow cytometry. Findings: Human islet allografts were rapidly rejected in subjects that did notreceive Treg. With Treg treatment, however, human islet allograft rejection was prevented (median survival time (MST) of > 45 days with Treg, as opposed to an MST of 23 days without Treg). Ex vivo expanded Treg homed to the lymphoid tissue draining the graft site where they suppressed the priming, activation, proliferation, and effector cytokine production of alloreactive T cells. Interpretation: These findings in a clinically relevant model of human pancreatic islet transplantation demonstrate the ability of ex vivo expanded human Treg to attenuate acute islet allograft rejection, and provide further support for their use in cellular immunotherapy.


2013 ◽  
Vol 33 (6) ◽  
pp. 1271-1279 ◽  
Author(s):  
Monika K. Grudzinska ◽  
Ewa Kurzejamska ◽  
Krzysztof Bojakowski ◽  
Joanna Soin ◽  
Michael H. Lehmann ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3883-3883
Author(s):  
Casper Paludan ◽  
Ryhor Harbacheuski ◽  
Rose Ann Murray ◽  
Megan Mendillo ◽  
Jorge Soler ◽  
...  

Abstract The placenta is a readily available and ethically non-controversial source of large amounts of therapeutic stem cells. Placenta Derived Adherent Cells (PDACs) are isolated from the placenta by one of several methods including physical disruption of tissue from several different anatomical sites within the placenta that include the amniotic membrane, chorion, placental cotyledons, or any combination thereof. Flow cytometry analysis showed that PDACs isolated from certain sites exhibit defined phenotypes, including for example CD200+ CD105+ CD73+ CD34− CD45− at percentages ≥70% and constitutively secrete IL-6, IL-8, and Monocyte Chemoattractant Protein-1 (MCP-1). PDACs demonstrate in vitro pluripotency in the adipogenic, osteogenic, and chondrogenic lineages. Furthermore, PDACs suppress T cell proliferation in certain Mixed Leukocyte Reaction (MLR) and the autologous EBV regression assays. Because secreted factors can powerfully modify immune responses and influence therapeutic use of cells, we report on the cytokine secretion in certain PDAC MLR and regression assays. Cytokines were measured on a Luminex system in supernatants from 6-day PDAC cultures, PDAC MLRs or PDAC regression assays. MLRs include PDACs, Dendritic Cells (DC)s, and T cells at DC/PDAC/T ratios 1/2/10. EBV regression assays included PDACs, EBV antigen-presenting cells (APC), and T cells at APC/PDAC/T ratios 1/2/10. Levels of IL-6 (11 ng/ml) and IL-8 (16 ng/ml) stayed constant in PDAC solo cultures, PDAC MLRs, and PDAC regression assays. MCP-1 concentration was 2 ng/ml in PDAC solo cultures, and non-suppressive control adherent cell MLRs and regression assays, but increased to 10 ng/ml in suppressed PDAC MLRs and PDAC regression assays. These values are consistent with reported MCP-1 serum levels. Interleukin-2 (IL-2) is both a T cell survival factor and an obligate factor for CD4+CD25+ T regulatory cells. T regulatory cells are not required for PDAC T cell suppression, but IL-2 levels consistently increase when MLR suppression by PDACs occurs. The CD4 MLR supernatants contained 65 pg/ml IL-2, and the CD8 MLR contained 35 pg/ml IL-2. In the 85% and 75% suppressed CD4 and CD8 PDAC MLRs, the IL-2 levels rose 5-fold to 331 pg/ml (CD4) and 2-fold to 67 pg/ml(CD8). These results indicate that IL-2 and MCP-1, traditionally known as stimulators of the immune response, may play a role in PDAC immune suppression. PDACs, which cause the secretion, may thus be useful therapeutic tools in the clinic.


Endocrinology ◽  
2006 ◽  
Vol 147 (2) ◽  
pp. 762-768 ◽  
Author(s):  
Hongjun Wang ◽  
Soo Sun Lee ◽  
Carlotta Dell’Agnello ◽  
Vaja Tchipashvili ◽  
Joanna D’Avilla ◽  
...  

Induction of heme oxygenase-1 (HO-1) expression in recipients of allogeneic islets can lead to long-term survival (>100 d) of those islets. We tested whether administration of bilirubin would substitute for the beneficial effects of HO-1 expression in islet transplantation. Administering bilirubin to the recipient (B6AF1) or incubating islets in a bilirubin-containing solution ex vivo led to long-term survival of allogeneic islets in a significant percentage of cases. In addition, administering bilirubin to only the donor frequently led to long-term survival of DBA/2 islets in B6AF1 recipients and significantly prolonged graft survival of BALB/c islets in C57BL/6 recipients. Donor treatment with bilirubin up-regulated mRNA expression of protective genes such as HO-1 and bcl-2 and suppressed proinflammatory and proapoptotic genes including monocyte chemoattractant protein-1 and caspase-3 and -8 in the islet grafts before transplantation. Furthermore, treatment of only the donor suppressed the expression of proinflammatory cytokines including TNF-α, inducible nitric oxide synthase, monocyte chemoattractant protein-1, and other proapoptotic and proinflammatory genes normally seen in the islets after transplantation. Donor treatment also reduced the number of macrophages that infiltrated the islet grafts in the recipients. Preincubation of βTC3 cells with bilirubin also protected the cells from lipid peroxidation. Our data suggests that the potent antioxidant and antiinflammatory actions of bilirubin may contribute to islet survival.


Sign in / Sign up

Export Citation Format

Share Document