scholarly journals The Role of Estrogen Signaling in a Mouse Model of Inflammatory Bowel Disease: A Helicobacter Hepaticus Model

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e94209 ◽  
Author(s):  
Lydia C. Cook ◽  
Andrew E. Hillhouse ◽  
Matthew H. Myles ◽  
Dennis B. Lubahn ◽  
Elizabeth C. Bryda ◽  
...  
2015 ◽  
Vol 148 (4) ◽  
pp. S-383-S-384
Author(s):  
Pouria Heydarpour ◽  
Reza Rahimian ◽  
Gohar Fakhfouri ◽  
Shayan Khoshkish ◽  
Mohammad Salehi-Sadaghiani ◽  
...  

2020 ◽  
Author(s):  
Lisa Abernathy Close ◽  
Madeline R Barron ◽  
James M George ◽  
Michael G Dieterle ◽  
Kimberly C Vendrov ◽  
...  

Clostridioides difficile has emerged as a noteworthy pathogen in patients with inflammatory bowel disease (IBD). Concurrent IBD and CDI is associated with increased morbidity and mortality compared to CDI alone. IBD is associated with alterations of the gut microbiota, an important mediator of colonization resistance to C. difficile. Here, we describe and utilize a mouse model to explore the role of intestinal inflammation in susceptibility to C. difficile colonization and subsequent disease severity in animals with underlying IBD. Helicobacter hepaticus, a normal member of the mouse gut microbiota, was used to trigger inflammation in the distal intestine akin to human IBD in mice that lack intact IL-10 signaling. Development of IBD resulted in a distinct intestinal microbiota community compared to non-IBD controls. We demonstrate that in this murine model, IBD was sufficient to render mice susceptible to C. difficile colonization. Mice with IBD were persistently colonized by C. difficile, while genetically identical non-IBD controls were resistant to C. difficile colonization. Concomitant IBD and CDI was associated with significantly worse disease than unaccompanied IBD. IL-10-deficient mice maintained gut microbial diversity and colonization resistance to C. difficile in experiments utilizing an isogenic mutant of H. hepaticus that does not trigger intestinal inflammation. These studies in mice demonstrate that the IBD-induced microbiota is sufficient for C. difficile colonization and that this mouse model requires intestinal inflammation for inducing susceptibility to CDI in the absence of other perturbations, such as antibiotic treatment.


2009 ◽  
Vol 47 (09) ◽  
Author(s):  
J Glas ◽  
J Seiderer ◽  
HP Török ◽  
B Göke ◽  
T Ochsenkühn ◽  
...  

2009 ◽  
Vol 150 (18) ◽  
pp. 839-845 ◽  
Author(s):  
János Banai

Aetiology of inflammatory bowel disease (IBD) is complex and probably multifactorial. Nutrition has been proposed to be an important aetiological factor for development of IBD. Several components of the diet (such as sugar, fat, fibre, fruit and vegetable, protein, fast food, preservatives etc.) were examined as possible causative agents for IBD. According to some researchers infant feeding (breast feeding) may also contribute to the development of IBD. Though the importance of environmental factors is evidenced by the increasing incidence in developed countries and in migrant population in recent decades, the aetiology of IBD remained unclear. There are many theories, but as yet no dietary approaches have been proved to reduce the risk of developing IBD. The role of nutrition in the management of IBD is better understood. The prevention and correction of malnutrition, the provision of macro- and micronutrients and vitamins and the promotion of optimal growth and development of children are key points of nutritional therapy. In active disease, the effective support of energy and nutrients is a very important part of the therapy. Natural and artificial nutrition or the combination of two can be choosen for supporting therapy of IBD. The author summarises the aetiological and therapeutic role of nutrition in IBD.


2019 ◽  
Vol 156 (6) ◽  
pp. S-1124
Author(s):  
Clara Caenepeel ◽  
Sara Vieira-Silva ◽  
Jorge F. Vázquez-Castellanos ◽  
Bram Verstockt ◽  
Marc Ferrante ◽  
...  

Redox Report ◽  
2010 ◽  
Vol 15 (5) ◽  
pp. 193-201 ◽  
Author(s):  
Tomohisa Takagi ◽  
Yuji Naito ◽  
Kazuhiko Uchiyama ◽  
Toshikazu Yoshikawa

2020 ◽  
Vol 22 (1) ◽  
pp. 364
Author(s):  
Qiyuan Han ◽  
Thomas J. Y. Kono ◽  
Charles G. Knutson ◽  
Nicola M. Parry ◽  
Christopher L. Seiler ◽  
...  

Epigenetic dysregulation is hypothesized to play a role in the observed association between inflammatory bowel disease (IBD) and colon tumor development. In the present work, DNA methylome, hydroxymethylome, and transcriptome analyses were conducted in proximal colon tissues harvested from the Helicobacter hepaticus (H. hepaticus)-infected murine model of IBD. Reduced representation bisulfite sequencing (RRBS) and oxidative RRBS (oxRRBS) analyses identified 1606 differentially methylated regions (DMR) and 3011 differentially hydroxymethylated regions (DhMR). These DMR/DhMR overlapped with genes that are associated with gastrointestinal disease, inflammatory disease, and cancer. RNA-seq revealed pronounced expression changes of a number of genes associated with inflammation and cancer. Several genes including Duox2, Tgm2, Cdhr5, and Hk2 exhibited changes in both DNA methylation/hydroxymethylation and gene expression levels. Overall, our results suggest that chronic inflammation triggers changes in methylation and hydroxymethylation patterns in the genome, altering the expression of key tumorigenesis genes and potentially contributing to the initiation of colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document