reduced representation
Recently Published Documents


TOTAL DOCUMENTS

417
(FIVE YEARS 196)

H-INDEX

32
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Yuting Wang ◽  
Liping Liu ◽  
Yifan Song ◽  
Xiaojie Yu ◽  
Hongkui Deng

AbstractSenescence, a stable state of growth arrest, affects many physiological and pathophysiological processes, especially aging. Previous work has indicated that transcription factors (TFs) play a role in regulating senescence. However, a systematic study of regulatory TFs during replicative senescence (RS) using multi-omics analysis is still lacking. Here, we generated time-resolved RNA-seq, reduced representation bisulfite sequencing (RRBS) and ATAC-seq datasets during RS of mouse skin fibroblasts, which demonstrated that an enhanced inflammatory response and reduced proliferative capacity were the main characteristics of RS in both the transcriptome and epigenome. Through integrative analysis and genetic manipulations, we found that transcription factors E2F4, TEAD1 and AP-1 are key regulators of RS. Overexpression of E2f4 improved cellular proliferative capacity, attenuated SA-β-Gal activity and changed RS-associated differentially methylated sites (DMSs). Moreover, knockdown of Tead1 attenuated SA-β-Gal activity and partially altered the RS-associated transcriptome. In addition, knockdown of Atf3, one member of AP-1 superfamily TFs, reduced Cdkn2a (p16) expression in pre-senescent fibroblasts. Taken together, the results of this study identified transcription factors regulating the senescence program through multi-omics analysis, providing potential therapeutic targets for anti-aging.


Author(s):  
Daria Martchenko ◽  
Aaron Shafer

Genomic approaches to the study of population demography rely on accurate SNP calling and by-proxy the site frequency spectrum (SFS). Two main questions for the design of such studies remain poorly investigated: do reduced genomic sequencing summary statistics reflect that of whole genome, and how do sequencing strategies and derived summary statistics impact demographic inferences? To address those questions, we applied the ddRAD sequencing approach to 254 individuals and whole genome resequencing approach to 35 mountain goat (Oreamnos americanus) individuals across the species range with a known demographic history. We identified SNPs with 5 different variant callers and used ANGSD to estimate the genotype likelihoods (GLs). We tested combinations of SNP filtering by linkage disequilibrium (LD), minor allele frequency (MAF) and the genomic region. We compared the resulting suite of summary statistics reflective of the SFS and quantified the relationship to demographic inferences by estimating the contemporary effective population size (Ne), isolation-by-distance and population structure, FST, and explicit modelling of the demographic history with δaδi. Filtering had a larger effect than sequencing strategy, with the former strongly influencing summary statistics. Estimates of contemporary Ne and isolation-by-distance patterns were largely robust to the choice of sequencing, pipeline, and filtering. Despite the high variance in summary statistics, whole genome and reduced representation approaches were overall similar in supporting a glacial induced vicariance and low Ne in mountain goats. We discuss why whole genome resequencing data is preferable, and reiterate support the use of GLs, in part because it limits user-determined filters.


2022 ◽  
Author(s):  
Miguel Vallebueno-Estrada ◽  
Sonja Steindl ◽  
Vasilina Akulova ◽  
Julia Riefler ◽  
Lucyna Slusarz ◽  
...  

Reduced representation library approaches are still a valuable tool for breeding and population and ecological genomics, even with impressive increases in sequencing capacity in recent years. Unfortunately, current approaches only allow for multiplexing up to 384 samples. To take advantage of increased sequencing capacity, we present Multi-GBS, a massively multiplexable extension to Genotyping-by-Sequencing that is also optimized for large conifer genomes. In Norway Spruce, a highly repetitive 20Gbp diploid genome with high population genetic variation, we call over a million variants in 32 genotypes from three populations, two natural forest in the Alps and Bohemian Alps, and a managed population from southeastern Austria using the existing TASSEL GBSv2 pipeline. Metric MDS analysis of replicated genotypes shows that technical bias in resulting genotype calling is minimal and that populations cluster in biologically meaningful ways.


Author(s):  
Michelle L. Roberts ◽  
Theodore A. Kotchen ◽  
Xiaoqing Pan ◽  
Yingchuan Li ◽  
Chun Yang ◽  
...  

Background: Epigenetic marks (eg, DNA methylation) may capture the effect of gene-environment interactions. DNA methylation is involved in blood pressure (BP) regulation and hypertension development; however, no studies have evaluated its relationship with 24-hour BP phenotypes (daytime, nighttime, and 24-hour average BPs). Methods: We examined the association of whole blood DNA methylation with 24-hour BP phenotypes and clinic BPs in a discovery cohort of 281 Blacks using reduced representation bisulfite sequencing. We developed a deep and region-specific methylation sequencing method, Bisulfite ULtrapLEx Targeted Sequencing and utilized it to validate our findings in a separate validation cohort (n=117). Results: Analysis of 38 215 DNA methylation regions (MRs), derived from 1 549 368 CpG sites across the genome, identified up to 72 regions that were significantly associated with 24-hour BP phenotypes. No MR was significantly associated with clinic BP. Two to 3 MRs were significantly associated with various 24-hour BP phenotypes after adjustment for age, sex, and body mass index. Together, these MRs explained up to 16.5% of the variance of 24-hour average BP, while age, sex, and BMI explained up to 11.0% of the variance. Analysis of one of the MRs in an independent cohort using Bisulfite ULtrapLEx Targeted Sequencing confirmed its association with 24-hour average BP phenotype. Conclusions: We identified several MRs that explain a substantial portion of variances in 24-hour BP phenotypes, which might be excellent markers of cumulative effect of factors influencing 24-hour BP levels. The Bisulfite ULtrapLEx Targeted Sequencing workflow has potential to be suitable for clinical testing and population screenings on a large scale.


Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 30
Author(s):  
Daniel Fernández Marchán ◽  
Thibaud Decaëns ◽  
Jorge Domínguez ◽  
Marta Novo

Earthworm systematics have been limited by the small number of taxonomically informative morphological characters and high levels of homoplasy in this group. However, molecular phylogenetic techniques have yielded significant improvements in earthworm taxonomy in the last 15 years. Several different approaches based on the use of different molecular markers, sequencing techniques, and compromises between specimen/taxon coverage and phylogenetic information have recently emerged (DNA barcoding, multigene phylogenetics, mitochondrial genome analysis, transcriptome analysis, targeted enrichment methods, and reduced representation techniques), providing solutions to different evolutionary questions regarding European earthworms. Molecular phylogenetics have led to significant advances being made in Lumbricidae systematics, such as the redefinition or discovery of new genera (Galiciandrilus, Compostelandrilus, Vindoboscolex, Castellodrilus), delimitation and revision of previously existing genera (Kritodrilus, Eophila, Zophoscolex, Bimastos), and changes to the status of subspecific taxa (such as the Allolobophorachaetophora complex). These approaches have enabled the identification of problems that can be resolved by molecular phylogenetics, including the revision of Aporrectodea, Allolobophora, Helodrilus, and Dendrobaena, as well as the examination of small taxa such as Perelia, Eumenescolex, and Iberoscolex. Similar advances have been made with the family Hormogastridae, in which integrative systematics have contributed to the description of several new species, including the delimitation of (formerly) cryptic species. At the family level, integrative systematics have provided a new genus system that better reflects the diversity and biogeography of these earthworms, and phylogenetic comparative methods provide insight into earthworm macroevolution. Despite these achievements, further research should be performed on the Tyrrhenian cryptic complexes, which are of special eco-evolutionary interest. These examples highlight the potential value of applying molecular phylogenetic techniques to other earthworm families, which are very diverse and occupy different terrestrial habitats across the world. The systematic implementation of such approaches should be encouraged among the different expert groups worldwide, with emphasis on collaboration and cooperation.


Author(s):  
Devon DeRaad

Here I describe the novel R package SNPfiltR and demonstrate its functionalities as the backbone of a customizable, reproducible SNP filtering pipeline implemented exclusively via the widely adopted R programming language. SNPfiltR extends existing SNP filtering functionalities by automating the visualization of key parameters such as depth, quality, and missing data, then allowing users to set filters based on optimized thresholds, all within a single, cohesive working environment. All SNPfiltR functions require a vcfR object as input, which can be easily generated by reading a SNP dataset stored as a standard vcf file into an R working environment using the function read.vcfR() from the R package vcfR. Performance benchmarking reveals that for moderately sized SNP datasets (up to 50M genotypes with associated quality information), SNPfiltR performs filtering with comparable efficiency to current state of the art command-line-based programs. These benchmarking results indicate that for most reduced-representation genomic datasets, SNPfiltR is an ideal choice for investigating, visualizing, and filtering SNPs as part of a cohesive and easily documentable bioinformatic pipeline. The SNPfiltR package can be downloaded from CRAN with the command [install.packages(“SNPfiltR”)], and a development version is available from GitHub at: (github.com/DevonDeRaad/SNPfiltR). Additionally, thorough documentation for SNPfiltR, including multiple comprehensive vignettes, is available at the website: (devonderaad.github.io/SNPfiltR/).


Author(s):  
Rafael Guzmán-Cabrera ◽  
Iván A. Hernández-Robles ◽  
Xiomara González Ramírez ◽  
José Rafael Guzmán Sepúlveda

Probabilistic approaches are frequently used to describe irregular activity data to assist the design and development of devices. Unfortunately, useful estimations are not always feasible due to the large noise in the data modeled, as it occurs when estimating the sea waves potential for electricity generation. In this work we propose a simple methodology based on the use of joint probability models that allow discriminating extreme values, collected from measurements as pairs of independent points, while allowing the preservation of the essential statistics of the measurements. The outcome of the proposed methodology is an equivalent data series where large-amplitude fluctuations are suppressed and, therefore, can be used for design purposes. For the evaluation of the proposed method, we used year-long databases of hourly-collected measurements of the wave’s height and period, performed at maritime buoys located in the Gulf of Mexico. These measurements are used to obtain a fluctuations-reduced representation of the energy potential of the waves that can be useful, for instance, for the design of electric generators.


Author(s):  
Brandon T. Sinn ◽  
Sandra J. Simon ◽  
Mathilda V. Santee ◽  
Stephen P. DiFazio ◽  
Nicole M. Fama ◽  
...  

2021 ◽  
Author(s):  
Matt J. Thorstensen ◽  
Peter T. Euclide ◽  
Jennifer D. Jeffrey ◽  
Yue Shi ◽  
Jason R. Treberg ◽  
...  

AbstractGenomic architecture, such as chromosomal inversions, may play an important role in facilitating adaptation despite opportunities for gene flow. One system where chromosomal inversions may be important for eco-evolutionary dynamics are in freshwater fish, which often live in heterogenous environments characterized by varying levels of connectivity and varying opportunities for gene flow. In the present study, reduced representation sequencing was used to study possible adaptation in n=345 walleye (Sander vitreus) from three North American waterbodies: Cedar Bluff Reservoir (Kansas, USA), Lake Manitoba (Manitoba, Canada), and Lake Winnipeg (Manitoba, Canada). Haplotype and outlier-based tests revealed a putative chromosomal inversion that contained three expressed genes and was nearly fixed for alternate genotypes in each Canadian lake. These patterns exist despite several opportunities for gene flow between these proximate Canadian lakes, suggesting that the inversion may be important for facilitating adaptative divergence between the two lakes despite gene flow. Our study illuminates the importance of genomic architecture for facilitating local adaptation in freshwater fish and provides additional evidence that inversions may facilitate local adaptation in many organisms that inhabit connected but heterogenous environments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kari Guderud ◽  
Line H. Sunde ◽  
Siri T. Flåm ◽  
Marthe T. Mæhlen ◽  
Maria D. Mjaavatten ◽  
...  

BackgroundMethotrexate (MTX) is the first line treatment of rheumatoid arthritis (RA), and methylation changes in bulk T cells have been reported after treatment with MTX. We have investigated cell-type specific DNA methylation changes across the genome in naïve and memory CD4+ T cells before and after MTX treatment of RA patients. DNA methylation profiles of newly diagnosed RA patients (N=9) were assessed by reduced representation bisulfite sequencing.ResultsWe found that MTX treatment significantly influenced DNA methylation levels at multiple CpG sites in both cell populations. Interestingly, we identified differentially methylated sites annotated to two genes; TRIM15 and SORC2, previously reported to predict treatment outcome in RA patients when measured in bulk T cells. Furthermore, several of the genes, including STAT3, annotated to the significant CpG sites are relevant for RA susceptibility or the action of MTX.ConclusionWe detected CpG sites that were associated with MTX treatment in CD4+ naïve and memory T cells isolated from RA patients. Several of these sites overlap genetic regions previously associated with RA risk and MTX treatment outcome.


Sign in / Sign up

Export Citation Format

Share Document