scholarly journals Protective Effects of Carbon Monoxide-Releasing Molecule-2 on the Barrier Function of Intestinal Epithelial Cells

PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e104032 ◽  
Author(s):  
Xinwei Mu ◽  
Chen Pan ◽  
Shuyun Zheng ◽  
Yasir Alhamdi ◽  
Bingwei Sun ◽  
...  
2008 ◽  
Vol 19 (9) ◽  
pp. 3701-3712 ◽  
Author(s):  
Jie Chen ◽  
Lan Xiao ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Liu ◽  
...  

The AP-1 transcription factor JunD is highly expressed in intestinal epithelial cells, but its exact role in maintaining the integrity of intestinal epithelial barrier remains unknown. The tight junction (TJ) protein zonula occludens (ZO)-1 links the intracellular domain of TJ-transmembrane proteins occludin, claudins, and junctional adhesion molecules to many cytoplasmic proteins and the actin cytoskeleton and is crucial for assembly of the TJ complex. Here, we show that JunD negatively regulates expression of ZO-1 and is implicated in the regulation of intestinal epithelial barrier function. Increased JunD levels by ectopic overexpression of the junD gene or by depleting cellular polyamines repressed ZO-1 expression and increased epithelial paracellular permeability. JunD regulated ZO-1 expression at the levels of transcription and translation. Transcriptional repression of ZO-1 by JunD was mediated through cAMP response element-binding protein-binding site within its proximal region of the ZO-1-promoter, whereas induced JunD inhibited ZO-1 mRNA translation by enhancing the interaction of the ZO-1 3′-untranslated region with RNA-binding protein T cell-restricted intracellular antigen 1-related protein. These results indicate that JunD is a biological suppressor of ZO-1 expression in intestinal epithelial cells and plays a critical role in maintaining epithelial barrier function.


1997 ◽  
Vol 272 (4) ◽  
pp. G879-G884 ◽  
Author(s):  
P. E. Wischmeyer ◽  
M. W. Musch ◽  
M. B. Madonna ◽  
R. Thisted ◽  
E. B. Chang

Glutamine (Gln) protects gut mucosa against injury and promotes mucosal healing. Because the induction of heat shock proteins (HSP) protects cells under conditions of stress, we determined whether Gln conferred protection against stress in an intestinal epithelial cell line through HSP induction. Gln added to IEC-18 cells induces an increase in HSP70, a concentration-dependent effect also seen with mRNA. Two forms of injury, lethal heat (49 degrees C) and oxidant, were used, and viability was determined by 51Cr release. Gln-treated cells were significantly more resistant to injury. Treatment with 6-diazo-5-oxo-L-norleucine (DON), a nonmetabolizable analog of Gln, induced HSP70 and protected cells from injury, but less than Gln. These findings suggest that the effects of Gln on HSP70 induction and cellular protection are mediated by metabolic and nonmetabolic mechanisms. To determine whether HSP induction was central to the action of Gln and DON, quercetin, which blocks HSP induction, was used. Quercetin blocked HSP70 induction and the protective effect of Gln and DON. We conclude that the protective effects of Gln in intestinal epithelial cells are in part mediated by HSP70 induction.


2020 ◽  
Vol 159 (5) ◽  
pp. 1763-1777.e14 ◽  
Author(s):  
Marianne R. Spalinger ◽  
Anica Sayoc-Becerra ◽  
Alina N. Santos ◽  
Ali Shawki ◽  
Vinicius Canale ◽  
...  

2000 ◽  
Vol 119 (6) ◽  
pp. 1524-1536 ◽  
Author(s):  
Maria T. Abreu ◽  
Andrew A. Palladino ◽  
Elizabeth T. Arnold ◽  
Richard S. Kwon ◽  
James A. McRoberts

Sign in / Sign up

Export Citation Format

Share Document