Faculty Opinions recommendation of [CONFERENCE POSTER]: Barrier-protective effects of the ginger constituent 6-shogaol in intestinal epithelial cells (HT-29/B6).

Author(s):  
Richard J Naftalin
2016 ◽  
Vol 32 (5) ◽  
pp. 623-634 ◽  
Author(s):  
Rita Rosenthal ◽  
Julia Luettig ◽  
Nina A. Hering ◽  
Susanne M. Krug ◽  
Uwe Albrecht ◽  
...  

1997 ◽  
Vol 272 (4) ◽  
pp. G879-G884 ◽  
Author(s):  
P. E. Wischmeyer ◽  
M. W. Musch ◽  
M. B. Madonna ◽  
R. Thisted ◽  
E. B. Chang

Glutamine (Gln) protects gut mucosa against injury and promotes mucosal healing. Because the induction of heat shock proteins (HSP) protects cells under conditions of stress, we determined whether Gln conferred protection against stress in an intestinal epithelial cell line through HSP induction. Gln added to IEC-18 cells induces an increase in HSP70, a concentration-dependent effect also seen with mRNA. Two forms of injury, lethal heat (49 degrees C) and oxidant, were used, and viability was determined by 51Cr release. Gln-treated cells were significantly more resistant to injury. Treatment with 6-diazo-5-oxo-L-norleucine (DON), a nonmetabolizable analog of Gln, induced HSP70 and protected cells from injury, but less than Gln. These findings suggest that the effects of Gln on HSP70 induction and cellular protection are mediated by metabolic and nonmetabolic mechanisms. To determine whether HSP induction was central to the action of Gln and DON, quercetin, which blocks HSP induction, was used. Quercetin blocked HSP70 induction and the protective effect of Gln and DON. We conclude that the protective effects of Gln in intestinal epithelial cells are in part mediated by HSP70 induction.


2019 ◽  
Vol 54 (12) ◽  
pp. 2509-2513
Author(s):  
Jia Liu ◽  
Bo Li ◽  
Carol Lee ◽  
Haitao Zhu ◽  
Shan Zheng ◽  
...  

2020 ◽  
Vol 17 (8) ◽  
pp. 993-1000
Author(s):  
Mengmeng Zhuang ◽  
Juan Le ◽  
Bo Zhu ◽  
Wenwen Zhang ◽  
Hao Yan ◽  
...  

Objective: Trefoil factor family is expressed in several tissues of the body and provides gastric and intestinal protection and healing. This research aims to indicate the mechanism involved in its function. Methods: The intestinal epithelial cells were pretreated with JAK inhibitor AG490 or the concentration of 60ug/ml human recombinant trefoil factor, while the levels of phospho-STAT3, E-cadherin and N-cadherin were detected by Western Blotting. The levels of Matrix Metalloproteinases, Ecadherin and N-cadherin were evaluated by quantitative real time PCR. The cell migration was assessed by the transwell assay and the scratch assay. The immunofluorescence method was performed to detect the reduction of molecular E-cadherin. Results: hTFF3 activates the JAK/STAT3 pathway in HT-29 cells. The effect of JAK/STAT3 pathway mechanism on cell migration promoted by hTFF3. TFF3 promoting cell migration is associated with increased gene transcription of MMPs. hTFF3 alters E-cadherin expression. hTFF3 activates the expression of N-cadherin and down-regulates E-cadherin expression in HT-29 Cells. Conclusion: We have shown that TFF3 activated the JAK/STAT3 pathway. TFF3 increased the level of Matrix Metalloproteinases and N-cadherin, decreased that of E-cadherin, while AG490 had the opposite effect. TFF3 accelerated cell migration and the AG490 relieved the migrating rate to control the levels. TFF3 activated JAK/STAT3 pathway which was associated with intestinal epithelial cell migration.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S29-S30
Author(s):  
Jessy Ntunzwenimana ◽  
Azadeh Alikashani ◽  
Claudine Beauchamp ◽  
Jean Paquette ◽  
Gabrielle Boucher ◽  
...  

Abstract Inflammatory bowel disease (IBD) are chronic inflammatory diseases including Crohn’s disease (CD) and ulcerative colitis (UC). More than 200 genomic regions have been identified and validated (association values〈 5x10-8) to be associated with CD, UC or IBD. These regions may contain multiple genes and the current challenge lies in identifying the causal gene in each of these. To address this problem, we performed a functional genomic screen of 145 genes from validated IBD loci, in a relevant intestinal epithelial cell model (HT-29). The results of this transcriptome-based screening revealed that the candidate IBD gene DUSP16 (a dual specificity phosphatase targeting MAP kinases (MAPKs) phosphorylation) as well as the known IBD gene KSR1 (a scaffold protein regulating the spatiotemporal activation of the ERK) regulate the expression of genes involved in intestinal differentiation and homeostasis. They induce, among others, the expression of the PIGR gene that encodes the polymeric immunoglobulin receptor. PIGR plays a role in transporting dimeric IgA molecules from the basolateral membrane of epithelial cells to the intestinal lumen, via transcytosis, where they play an essential role in protecting the epithelium against intestinal pathogens. Our hypothesis is that DUSP16 and KSR1 modulate the activity of MAPKs in intestinal epithelial cells to induce PIGR expression, thus participating in the maintenance of homeostasis of the intestinal barrier. To better understand how DUSP16 modulates the expression of PIGR, we used an approach of over- expression (cDNA) and knockdown (shRNA) of DUSP16 in HT-29 cells. Our results confirmed that DUSP16 induction increases the expression of PIGR, whereas a knockdown of DUSP16 reduces the basal level of PIGR. Next we confirmed by Western Blot that the induction of DUSP16 was accompanied by a decrease in MAPK phosphorylation. The involvement of MAPKs was also confirmed through the use of chemical inhibitors specific for each MAPK, with inhibition of ERK and p38 showing the strongest induction of PIGR expression. We are currently analyzing known functional mutants of DUSP16 and KSR1 to determine their impact on MAPK activity and on PIGR expression. This work supports a role for PIGR in disease pathogenesis, adding to two recent studies that documented that patients suffering from UC accumulated somatic mutations in a group of genes regulating the expression of PIGR by Interleukin 17. The mutated genes, including PIGR, were positively selected in inflamed tissues, indicating the importance of the biological function occupied by this gene in the maintenance of homeostasis. In conclusion, our study successfully identified functional links between two genes from independent IBD loci, and suggests that these DUSP16 and KSR1 play a role in the process of epithelial transcytosis and the development of IBD.


PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e104032 ◽  
Author(s):  
Xinwei Mu ◽  
Chen Pan ◽  
Shuyun Zheng ◽  
Yasir Alhamdi ◽  
Bingwei Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document