Glutamine protects intestinal epithelial cells: role of inducible HSP70

1997 ◽  
Vol 272 (4) ◽  
pp. G879-G884 ◽  
Author(s):  
P. E. Wischmeyer ◽  
M. W. Musch ◽  
M. B. Madonna ◽  
R. Thisted ◽  
E. B. Chang

Glutamine (Gln) protects gut mucosa against injury and promotes mucosal healing. Because the induction of heat shock proteins (HSP) protects cells under conditions of stress, we determined whether Gln conferred protection against stress in an intestinal epithelial cell line through HSP induction. Gln added to IEC-18 cells induces an increase in HSP70, a concentration-dependent effect also seen with mRNA. Two forms of injury, lethal heat (49 degrees C) and oxidant, were used, and viability was determined by 51Cr release. Gln-treated cells were significantly more resistant to injury. Treatment with 6-diazo-5-oxo-L-norleucine (DON), a nonmetabolizable analog of Gln, induced HSP70 and protected cells from injury, but less than Gln. These findings suggest that the effects of Gln on HSP70 induction and cellular protection are mediated by metabolic and nonmetabolic mechanisms. To determine whether HSP induction was central to the action of Gln and DON, quercetin, which blocks HSP induction, was used. Quercetin blocked HSP70 induction and the protective effect of Gln and DON. We conclude that the protective effects of Gln in intestinal epithelial cells are in part mediated by HSP70 induction.

Author(s):  
Rino P. Donato ◽  
Adaweyah El-Merhibi ◽  
Batjargal Gundsambuu ◽  
Kai Yan Mak ◽  
Emma R. Formosa ◽  
...  

2020 ◽  
Vol 318 (4) ◽  
pp. C732-C739
Author(s):  
Fangyi Liu ◽  
Xiao Wang ◽  
Hua Geng ◽  
Heng-Fu Bu ◽  
Peng Wang ◽  
...  

Sirtuin 6 (Sirt6) is predominantly expressed in epithelial cells in intestinal crypts. It plays an important role in protecting intestinal epithelial cells against inflammatory injury. Previously, we found that colitis is associated with the downregulation of Sirt6 protein in the intestines. Here, we report that murine interferon-γ (Ifnγ) inhibits Sirt6 protein but not mRNA expression in young adult mouse colonocytes (YAMC, a mouse colonic epithelial cell line) in a dose- and time-dependent manner. Using microRNA array analysis, we showed that Ifnγ induces expression of miR-92b in YAMC cells. With in silico analysis, we found that the Sirt6 3′-untranslated region (UTR) contains a putative binding site for miR-92b. Luciferase assay showed that Ifnγ inhibited Sirt6 3′-UTR activity and this effect was mimicked by miR-92b via directly targeting the miR-92b seed site in the 3′-UTR of Sirt6 mRNA. Furthermore, Western blot demonstrated that miR-92b downregulated Sirt6 protein expression in YAMC cells. Blocking miR-92b with a specific inhibitor attenuated the inhibitory effect of Ifnγ on Sirt6 protein expression in the cells. Collectively, our data suggest that Ifnγ inhibits Sirt6 protein expression in intestinal epithelial cells via a miR-92b-mediated mechanism. miR-92b may be a novel therapeutic target for rescuing Sirt6 protein levels in intestinal epithelial cells, thereby protecting against intestinal mucosal injury caused by inflammation.


2002 ◽  
Vol 195 (5) ◽  
pp. 559-570 ◽  
Author(s):  
Mathias W. Hornef ◽  
Teresa Frisan ◽  
Alain Vandewalle ◽  
Staffan Normark ◽  
Agneta Richter-Dahlfors

Toll-like receptor (TLR) 4 is mainly found on cells of the myelopoietic lineage. It recognizes lipopolysaccharide (LPS) and mediates cellular activation and production of proinflammatory cytokines. Less is known about the distribution and role of TLR4 in epithelial cells that are continuously exposed to microbes and microbial products. Here we show that the murine small intestinal epithelial cell line m-ICcl2 is highly responsive to LPS and expresses both CD14 and TLR4. Transcription and surface membrane staining for CD14 were up-regulated upon LPS exposure. Surprisingly, TLR4 immunostaining revealed a strictly cytoplasmic paranuclear distribution. This paranuclear compartment could be identified as the Golgi apparatus. LPS added to the supernatant was internalized by m-ICcl2 cells and colocalized with TLR4. Continuous exposure to LPS led to a tolerant phenotype but did not alter TLR4 expression nor cellular distribution. Thus, intestinal epithelial cells might be able to provide the initial proinflammatory signal to attract professional immune cells to the side of infection. The cytoplasmic location of TLR4, which is identical to the final location of internalized LPS, further indicates an important role of cellular internalization and cytoplasmic traffic in the process of innate immune recognition.


2001 ◽  
Vol 281 (2) ◽  
pp. G323-G332 ◽  
Author(s):  
M. C. Buresi ◽  
E. Schleihauf ◽  
N. Vergnolle ◽  
A. Buret ◽  
J. L. Wallace ◽  
...  

The thrombin receptor, protease-activated receptor-1 (PAR-1), has wide tissue distribution and is involved in many physiological functions. Because thrombin is in the intestinal lumen and mucosa during inflammation, we sought to determine PAR-1 expression and function in human intestinal epithelial cells. RT-PCR showed PAR-1 mRNA expression in SCBN cells, a nontransformed duodenal epithelial cell line. Confluent SCBN monolayers mounted in Ussing chambers responded to PAR-1 activation with a Cl−-dependent increase in short-circuit current. The secretory effect was blocked by BaCl2and the Ca2+-ATPase inhibitor thapsigargin, but not by the L-type Ca2+channel blocker verapamil or DIDS, the nonselective inhibitor of Ca2+-dependent Cl−transport. Responses to thrombin and PAR-1-activating peptides exhibited auto- and crossdesensitization. Fura 2-loaded SCBN cells had increased fluorescence after PAR-1 activation, indicating increased intracellular Ca2+. RT-PCR showed that SCBN cells expressed mRNA for the cystic fibrosis transmembrane conductance regulator (CFTR) and hypotonicity-activated Cl−channel-2 but not for the Ca2+-dependent Cl−channel-1. PAR-1 activation failed to increase intracellular cAMP, suggesting that the CFTR channel is not involved in the Cl−secretory response. Our data demonstrate that PAR-1 is expressed on human intestinal epithelial cells and regulates a novel Ca2+-dependent Cl−secretory pathway. This may be of clinical significance in inflammatory intestinal diseases with elevated thrombin levels.


2019 ◽  
Vol 54 (12) ◽  
pp. 2509-2513
Author(s):  
Jia Liu ◽  
Bo Li ◽  
Carol Lee ◽  
Haitao Zhu ◽  
Shan Zheng ◽  
...  

2000 ◽  
Vol 74 (1) ◽  
pp. 513-517 ◽  
Author(s):  
Audrey Esclatine ◽  
Michel Lemullois ◽  
Alain L. Servin ◽  
Anne-Marie Quero ◽  
Monique Geniteau-Legendre

ABSTRACT Human cytomegalovirus (CMV) causes severe disease in immunosuppressed patients and notably infects the gastrointestinal tract. To understand the interaction of CMV with intestinal epithelial cells, which are highly susceptible to CMV infection in vivo, we used the intestinal epithelial cell line Caco-2 and demonstrated that CMV enters predominantly through the basolateral surface of polarized Caco-2 cells. As shown by expression of all three classes of CMV proteins and by visualization of nucleocapsids by transmission electron microscopy, both poorly and fully differentiated Caco-2 cells were permissive to CMV replication. However, infection failed to produce infectious particles in Caco-2 cells, irrespective of the state of differentiation.


Gut ◽  
2016 ◽  
Vol 66 (5) ◽  
pp. 823-838 ◽  
Author(s):  
Kristina Scheibe ◽  
Ingo Backert ◽  
Stefan Wirtz ◽  
Axel Hueber ◽  
Georg Schett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document