scholarly journals Birth Cohort, Age, and Sex Strongly Modulate Effects of Lipid Risk Alleles Identified in Genome-Wide Association Studies

PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0136319 ◽  
Author(s):  
Alexander M. Kulminski ◽  
Irina Culminskaya ◽  
Konstantin G. Arbeev ◽  
Liubov Arbeeva ◽  
Svetlana V. Ukraintseva ◽  
...  
2019 ◽  
Author(s):  
Roman Teo Oliynyk

AbstractFor more than a decade, genome-wide association studies have been making steady progress in discovering the causal gene variants that contribute to late-onset human diseases. Polygenic late-onset diseases in an aging population display the risk allele frequency decrease at older ages, caused by individuals with higher polygenic risk scores becoming ill proportionately earlier and bringing about a change in the distribution of risk alleles between new cases and the as-yet-unaffected population. This phenomenon is most prominent for diseases characterized by high cumulative incidence and high heritability, examples of which include Alzheimer’s disease, coronary artery disease, cerebral stroke, and type 2 diabetes, while for late-onset diseases with relatively lower prevalence and heritability, exemplified by cancers, the effect is significantly lower. Computer simulations have determined that genome-wide association studies of the late-onset polygenic diseases showing high cumulative incidence together with high initial heritability will benefit from using the youngest possible age-matched cohorts. Moreover, rather than using age-matched cohorts, study cohorts combining the youngest possible cases with the oldest possible controls may significantly improve the discovery power of genome-wide association studies.


2019 ◽  
Vol 9 (3) ◽  
pp. 38 ◽  
Author(s):  
Roman Teo Oliynyk

For more than a decade, genome-wide association studies have been making steady progress in discovering the causal gene variants that contribute to late-onset human diseases. Polygenic late-onset diseases in an aging population display a risk allele frequency decrease at older ages, caused by individuals with higher polygenic risk scores becoming ill proportionately earlier and bringing about a change in the distribution of risk alleles between new cases and the as-yet-unaffected population. This phenomenon is most prominent for diseases characterized by high cumulative incidence and high heritability, examples of which include Alzheimer’s disease, coronary artery disease, cerebral stroke, and type 2 diabetes, while for late-onset diseases with relatively lower prevalence and heritability, exemplified by cancers, the effect is significantly lower. In this research, computer simulations have demonstrated that genome-wide association studies of late-onset polygenic diseases showing high cumulative incidence together with high initial heritability will benefit from using the youngest possible age-matched cohorts. Moreover, rather than using age-matched cohorts, study cohorts combining the youngest possible cases with the oldest possible controls may significantly improve the discovery power of genome-wide association studies.


2020 ◽  
Vol 4 (1) ◽  
pp. 181-190 ◽  
Author(s):  
Zhaohui Du ◽  
Niels Weinhold ◽  
Gregory Chi Song ◽  
Kristin A. Rand ◽  
David J. Van Den Berg ◽  
...  

Abstract Persons of African ancestry (AA) have a twofold higher risk for multiple myeloma (MM) compared with persons of European ancestry (EA). Genome-wide association studies (GWASs) support a genetic contribution to MM etiology in individuals of EA. Little is known about genetic risk factors for MM in individuals of AA. We performed a meta-analysis of 2 GWASs of MM in 1813 cases and 8871 controls and conducted an admixture mapping scan to identify risk alleles. We fine-mapped the 23 known susceptibility loci to find markers that could better capture MM risk in individuals of AA and constructed a polygenic risk score (PRS) to assess the aggregated effect of known MM risk alleles. In GWAS meta-analysis, we identified 2 suggestive novel loci located at 9p24.3 and 9p13.1 at P < 1 × 10−6; however, no genome-wide significant association was noted. In admixture mapping, we observed a genome-wide significant inverse association between local AA at 2p24.1-23.1 and MM risk in AA individuals. Of the 23 known EA risk variants, 20 showed directional consistency, and 9 replicated at P < .05 in AA individuals. In 8 regions, we identified markers that better capture MM risk in persons with AA. AA individuals with a PRS in the top 10% had a 1.82-fold (95% confidence interval, 1.56-2.11) increased MM risk compared with those with average risk (25%-75%). The strongest functional association was between the risk allele for variant rs56219066 at 5q15 and lower ELL2 expression (P = 5.1 × 10−12). Our study shows that common genetic variation contributes to MM risk in individuals with AA.


Sign in / Sign up

Export Citation Format

Share Document