scholarly journals Quantifying Risk for Anxiety Disorders in Preschool Children: A Machine Learning Approach

PLoS ONE ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. e0165524 ◽  
Author(s):  
Kimberly L. H. Carpenter ◽  
Pablo Sprechmann ◽  
Robert Calderbank ◽  
Guillermo Sapiro ◽  
Helen L. Egger
2020 ◽  
pp. 1-11
Author(s):  
Wicher A. Bokma ◽  
Paul Zhutovsky ◽  
Erik J. Giltay ◽  
Robert A. Schoevers ◽  
Brenda W.J.H. Penninx ◽  
...  

Abstract Background Disease trajectories of patients with anxiety disorders are highly diverse and approximately 60% remain chronically ill. The ability to predict disease course in individual patients would enable personalized management of these patients. This study aimed to predict recovery from anxiety disorders within 2 years applying a machine learning approach. Methods In total, 887 patients with anxiety disorders (panic disorder, generalized anxiety disorder, agoraphobia, or social phobia) were selected from a naturalistic cohort study. A wide array of baseline predictors (N = 569) from five domains (clinical, psychological, sociodemographic, biological, lifestyle) were used to predict recovery from anxiety disorders and recovery from all common mental disorders (CMDs: anxiety disorders, major depressive disorder, dysthymia, or alcohol dependency) at 2-year follow-up using random forest classifiers (RFCs). Results At follow-up, 484 patients (54.6%) had recovered from anxiety disorders. RFCs achieved a cross-validated area-under-the-receiving-operator-characteristic-curve (AUC) of 0.67 when using the combination of all predictor domains (sensitivity: 62.0%, specificity 62.8%) for predicting recovery from anxiety disorders. Classification of recovery from CMDs yielded an AUC of 0.70 (sensitivity: 64.6%, specificity: 62.3%) when using all domains. In both cases, the clinical domain alone provided comparable performances. Feature analysis showed that prediction of recovery from anxiety disorders was primarily driven by anxiety features, whereas recovery from CMDs was primarily driven by depression features. Conclusions The current study showed moderate performance in predicting recovery from anxiety disorders over a 2-year follow-up for individual patients and indicates that anxiety features are most indicative for anxiety improvement and depression features for improvement in general.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  

2020 ◽  
Author(s):  
Clifford A. Brown ◽  
Jonny Dowdall ◽  
Brian Whiteaker ◽  
Lauren McIntyre

2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


Sign in / Sign up

Export Citation Format

Share Document