scholarly journals Modelling Robust Feedback Control Mechanisms That Ensure Reliable Coordination of Histone Gene Expression with DNA Replication

PLoS ONE ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. e0165848
Author(s):  
Andrea Christopher ◽  
Heike Hameister ◽  
Holly Corrigall ◽  
Oliver Ebenhöh ◽  
Berndt Müller ◽  
...  
2007 ◽  
Vol 35 (5) ◽  
pp. 1369-1371 ◽  
Author(s):  
B. Müller ◽  
J. Blackburn ◽  
C. Feijoo ◽  
X. Zhao ◽  
C. Smythe

In metazoans, accurate replication of chromosomes is ensured by the coupling of DNA synthesis to the synthesis of histone proteins. Expression of replication-dependent histone genes is restricted to S-phase by a combination of cell cycle-regulated transcriptional and post-transcriptional control mechanisms and is linked to DNA replication by a poorly understood mechanism involving checkpoint kinases [Su, Gao, Schneider, Helt, Weiss, O'Reilly, Bohmann and Zhao (2004) EMBO J. 23, 1133–1143; Kaygun and Marzluff (2005) Nat. Struct. Mol. Biol. 12, 794–800]. Here we propose a model for the molecular mechanisms that link these two important processes within S-phase, and propose roles for multiple checkpoints in this mechanism.


2012 ◽  
Vol 40 (4) ◽  
pp. 880-885 ◽  
Author(s):  
Alexander M.J. Rattray ◽  
Berndt Müller

Histone proteins are essential for the packaging of DNA into chromosomes. Histone gene expression is cell-cycle-regulated and coupled to DNA replication. Control of histone gene expression occurs at the transcriptional and post-transcriptional level and ensures that a fine balance between histone abundance and DNA replication is maintained for the correct packaging of newly replicated DNA into chromosomes. In the present paper, we review histone gene expression, highlighting the control mechanisms and key molecules involved in this process.


1987 ◽  
Vol 7 (5) ◽  
pp. 1933-1937 ◽  
Author(s):  
J J Carrino ◽  
V Kueng ◽  
R Braun ◽  
T G Laffler

During the S phase of the cell cycle, histone gene expression and DNA replication are tightly coupled. In mitotically synchronous plasmodia of the myxomycete Physarum polycephalum, which has no G1 phase, histone mRNA synthesis begins in mid-G2 phase. Although histone gene transcription is activated in the absence of significant DNA synthesis, our data demonstrate that histone gene expression became tightly coupled to DNA replication once the S phase began. There was a transition from the replication-independent phase to the replication-dependent phase of histone gene expression. During the first phase, histone mRNA synthesis appears to be under direct cell cycle control; it was not coupled to DNA replication. This allowed a pool of histone mRNA to accumulate in late G2 phase, in anticipation of future demand. The second phase began at the end of mitosis, when the S phase began, and expression became homeostatically coupled to DNA replication. This homeostatic control required continuing protein synthesis, since cycloheximide uncoupled transcription from DNA synthesis. Nuclear run-on assays suggest that in P. polycephalum this coupling occurs at the level of transcription. While histone gene transcription appears to be directly switched on in mid-G2 phase and off at the end of the S phase by cell cycle regulators, only during the S phase was the level of transcription balanced with the rate of DNA synthesis.


1987 ◽  
Vol 7 (5) ◽  
pp. 1933-1937
Author(s):  
J J Carrino ◽  
V Kueng ◽  
R Braun ◽  
T G Laffler

During the S phase of the cell cycle, histone gene expression and DNA replication are tightly coupled. In mitotically synchronous plasmodia of the myxomycete Physarum polycephalum, which has no G1 phase, histone mRNA synthesis begins in mid-G2 phase. Although histone gene transcription is activated in the absence of significant DNA synthesis, our data demonstrate that histone gene expression became tightly coupled to DNA replication once the S phase began. There was a transition from the replication-independent phase to the replication-dependent phase of histone gene expression. During the first phase, histone mRNA synthesis appears to be under direct cell cycle control; it was not coupled to DNA replication. This allowed a pool of histone mRNA to accumulate in late G2 phase, in anticipation of future demand. The second phase began at the end of mitosis, when the S phase began, and expression became homeostatically coupled to DNA replication. This homeostatic control required continuing protein synthesis, since cycloheximide uncoupled transcription from DNA synthesis. Nuclear run-on assays suggest that in P. polycephalum this coupling occurs at the level of transcription. While histone gene transcription appears to be directly switched on in mid-G2 phase and off at the end of the S phase by cell cycle regulators, only during the S phase was the level of transcription balanced with the rate of DNA synthesis.


Oncotarget ◽  
2017 ◽  
Vol 8 (55) ◽  
pp. 95005-95022 ◽  
Author(s):  
Qianyun Mei ◽  
Junhua Huang ◽  
Wanping Chen ◽  
Jie Tang ◽  
Chen Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document