scholarly journals The Effects of Transdermally Delivered Oleanolic Acid on Malaria Parasites and Blood Glucose Homeostasis in P. berghei-Infected Male Sprague-Dawley Rats

PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0167132 ◽  
Author(s):  
Happiness P. Sibiya ◽  
Musa V. Mabandla ◽  
Cephas T. Musabayane
1990 ◽  
Vol 258 (1) ◽  
pp. E203-E211 ◽  
Author(s):  
L. P. Turcotte ◽  
A. S. Rovner ◽  
R. R. Roark ◽  
G. A. Brooks

To evaluate the role played by gluconeogenesis in blood glucose homeostasis, female Sprague-Dawley rats were injected with mercaptopicolinic acid (MPA), a gluconeogenic inhibitor. Glucose kinetics were assessed by primed, continuous infusion of [U-14C]- and [6(-3)H]glucose via an indwelling jugular catheter at rest and during submaximal exercise at 13.4 m/min on level grade. Blood samples were taken from carotid catheters and analyzed for glucose and lactate concentrations and specific activities. Tissue glycogen samples were obtained from rats after exercise as well as from unexercised animals. When compared with the sham-injected animals, MPA-treated animals had 22% lower (5.92 +/- 0.36 vs. 7.62 +/- 0.21 mM) and 44% higher (1.90 +/- 0.11 vs. 1.32 +/- 0.09 mM) resting arterial glucose and lactate concentrations, respectively. Resting glucose appearance (Ra) rates were 20% lower in the MPA-treated animals (57.2 +/- 7.5 mumol.kg-1.min-1) than in the sham-injected animals (71.1 +/- 12.1 mumol.kg-1.min-1). During exercise, Ra increased to 174.7 +/- 32.8 mumol.kg-1.min-1 in sham-injected animals. In the MPA-treated animals, there was a 35% increase during the first 15 min of exercise, followed by a decrease to the resting values. MPA-treated animals had no measurable glucose recycling at rest or during exercise. Exercise decreased blood glucose concentration (35%) and increased blood lactate concentration (160%) in the MPA-treated animals. Exercising sham-injected animals had increased blood glucose (9.8%) but no change in blood lactate concentration. Moderate depletions in liver and skeletal muscle glycogen contents were observed after exercise.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 87 (2) ◽  
pp. 354-360 ◽  
Author(s):  
Yumiko Ishizawa ◽  
Shuichiro Ohta ◽  
Hiroyuki Shimonaka ◽  
Shuji Dohi

Background Although hyper- and hypoglycemia induce neurophysiologic changes, there have been no reports on the effects of blood glucose changes on anesthetic requirements. This study examined the effects of hyper- and hypoglycemia on the minimum alveolar concentration (MAC) of halothane in rats. In addition, based on a previous finding that the level of brain acetylcholine was reduced during mild hypoglycemia, the authors examined the influence of physostigmine on MAC during hypoglycemia. Methods In Sprague-Dawley rats, anesthesia was induced and maintained with halothane in oxygen and air. The MAC was determined by observing the response to tail clamping and tested during mild hypoglycemia (blood glucose level, 60 mg/dl) and hyperglycemia (blood glucose level, 300 and 500 mg/dl) induced by insulin and glucose infusion, respectively (experiment 1). The effects of 0.3 and 1.0 mg/kg physostigmine given intraperitoneally on MAC were examined in rats with mild and severe hypoglycemia (blood glucose level, 60 and 30 mg/dl; experiment 2). Results In experiment 1, mild hypoglycemia significantly reduced the MAC of halothane (0.76 +/- 0.03%) compared with the control value (0.92 +/- 0.04%), but hyperglycemia did not change MAC. In experiment 2, mild and severe hypoglycemia reduced MAC of halothane in a degree-dependent manner. Physostigmine (1 mg/kg) had no effect on MAC regardless of blood glucose level, but 0.3 mg/kg reduced MAC. Conclusions Hypoglycemia reduced anesthetic requirements in a degree-dependent manner, whereas hyperglycemia had no effects. Although the mechanism of hypoglycemic MAC reduction needs further investigations, physostigmine studies suggest that this may not be related to inhibition of cholinergic transmission.


2011 ◽  
Vol 141 (3) ◽  
pp. 950-958 ◽  
Author(s):  
Adam P. Chambers ◽  
Lene Jessen ◽  
Karen K. Ryan ◽  
Stephanie Sisley ◽  
Hilary E. Wilson–Pérez ◽  
...  

Metabolism ◽  
1976 ◽  
Vol 25 (11) ◽  
pp. 1381-1383 ◽  
Author(s):  
Robert Sherwin ◽  
John Wahren ◽  
Philip Felig

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Zhong-Xia Lu ◽  
Wen-Jun Xu ◽  
Yang-Sheng Wu ◽  
Chang-Yu Li ◽  
Yi-Tao Chen

The aim of the present study was to identify key antidiabetic nodes in the livers of pioglitazone-treated type 2 diabetes mellitus Sprague-Dawley rats by transcriptomic and proteomic analysis. Rats were randomly divided into the control, the diabetes model, and the pioglitazone-treated groups. After treatment with pioglitazone for 11 weeks, the effects on fasting blood glucose, body weight, and blood biochemistry parameters were evaluated. Microarray and iTRAQ analysis were used to determine the differentially expressed genes/proteins in rat livers. 1.5-fold changes in gene expression and 1.2-fold changes in protein were set as the screening criteria. After treatment with pioglitazone for 11 weeks, fasting blood glucose in pioglitazone-treated rats was significantly lower than that in the model group. There was a tendency for pioglitazone to reduce TC, TG, TP, ALB, BUN, and HDL-c levels. Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) were applied to analyze differentially expressed genes/proteins. Furthermore, Western blotting and RT-qPCR were used to validate the results of microarray and iTRAQ. In conclusion, Cyp7a1, Cp, and RT1-EC2 are differentially expressed genes/proteins since they showed a similar trend in rats in the model group and the pioglitazone-treated group.


2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S89-S90
Author(s):  
Cagri A Uysal ◽  
Burak Ozkan ◽  
Abbas Najimaldin Muhsun Al Bayati ◽  
Gonca Ozgun ◽  
Kadri Akinci ◽  
...  

Abstract Introduction Stasis zone is the encircling area of the coagulation zone which is a critical area determining the depth and width of the necrosis in burn patients. In our study we aim to salvage the stasis zone by injecting adipose derived stromal vascular fraction (ADSVF). Methods Intraperitoneal Streptozotocin was administered for the induction of diabetes mellitus (DM) and the development of DM was confirmed by the measurement of blood glucose levels in the blood samples with blood glucometer weekly 48 hours after injection. Rats with blood glucose levels above 200 mg/dl were accepted as diabetic. The diabetic animals were followed for 4 weeks before the intervention. Thermal injury was applied on dorsum of diabetic Sprague – Dawley rats (n=20) according to the previously described ‘‘comb burn’’ model. After the burn injury (30 minutes) on Sprague - Dawley rats; rat dorsum was separated into 2 equal parts consisting of 4 burn zones (3 stasis zone) on each pair. ADSVF cells harvested from inguinal fat pads of diabetic Sprague - Dawley rats (n=5) were injected on the right side while same amount of phosphate buffered saline (PBS) injected on the left side of the same animal. One week later, average vital tissue on the statis zone was determined by macroscopy, angiography and microscopy. Vascular density, inflammatory cell density and gradient of fibrosis were determined via immunohistochemical assay. Results Macroscopic stasis zone tissue survivability percentage (32 ± 3.28 %, 57 ± 4.28 %), average number of vessels (10.28 ± 1.28, 19.43 ± 1.72), capillary count (15.67 ± 1.97, 25.35 ± 2.15) and vascular density (1.55 ± 0.38, 2.14 ± 0.45) were higher on ADSVF side. Fibrosis gradient (1.87 ± 0.51, 1.50 ± 0.43) and inflammatory cell density (1.33 ± 0.40, 1.20 ± 0.32) were higher on the PBS side. Conclusions Macroscopic and microscopic findings determined that ADSVF has a statistically significant benefit for salvaging stasis zone on acute burn injuries in DM.


Sign in / Sign up

Export Citation Format

Share Document