scholarly journals Vertical ground reaction force marker for Parkinson’s disease

PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0175951 ◽  
Author(s):  
Md Nafiul Alam ◽  
Amanmeet Garg ◽  
Tamanna Tabassum Khan Munia ◽  
Reza Fazel-Rezai ◽  
Kouhyar Tavakolian
Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2604
Author(s):  
Yuan-Lun Hsieh ◽  
Maysam F. Abbod

Parkinson’s disease (PD) is a type of neurodegenerative diseases. PD influences gait in many aspects: reduced gait speed and step length, increased axial rigidity, and impaired rhythmicity. Gait-related data used in this study are from PhysioNet. Twenty-one PD patients and five healthy controls (CO) were sorted into four groups: PD without task (PDw), PD with dual task (PDd), control without task (COw), and control with dual task (COd). Since dual task actions are attention demanding, either gait or cognitive function may be affected. To quantify the used walking data, eight pressure sensors installed in each insole are used to measure the vertical ground reaction force. Thus, quantitative measurement analysis is performed utilizing multiscale entropy (MSE) and complexity index (CI) to analyze and differentiate between the ground reaction force of the four different groups. Results show that the CI of patients with PD is higher than that of CO and 11 of the sensor signals are statistically significant (p < 0.05). The COd group has larger CI values at the beginning (p = 0.021) but they get lower at the end of the test (p = 0.000) compared to that in the COw group. The end-of-test CI for the PDw group is lower in one of the feet sensor signals, and in the right total ground reaction force compared to the PDd group counterparts. In conclusion, when people start to adjust their gait due to pathology or stress, CI may increase first and reach a peak, but it decreases afterward when stress or pathology is further increased.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


1991 ◽  
Vol 71 (3) ◽  
pp. 1119-1122 ◽  
Author(s):  
R. Kram

People throughout Asia use springy bamboo poles to carry the loads of everyday life. These poles are a very compliant suspension system that allows the load to move along a nearly horizontal path while the person bounces up and down with each step. Could this be an economical way to carry loads inasmuch as no gravitational work has to be done to lift the load repeatedly? To find out, an experiment was conducted in which four male subjects ran at 3.0 m/s on a motorized treadmill with no load and while carrying a load equal to 19% body wt with compliant poles. Oxygen consumption rate, vertical ground reaction force, and the force exerted by the load on the shoulders were measured. Oxygen consumption rate increased by 22%. The same increase has previously been observed when loads are carried with a backpack. Thus compliant poles are not a particularly economical method of load carriage. However, pole suspension systems offer important advantages: they minimize peak shoulder forces and loading rates. In addition, the peak vertical ground reaction force is only slightly increased above unloaded levels when loads are carried with poles.


Sign in / Sign up

Export Citation Format

Share Document