scholarly journals Municipal wastewater treatment by the bioaugmentation of Bacillus sp. K5 within a sequencing batch reactor

PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0178837 ◽  
Author(s):  
Yunlong Yang ◽  
Linxiang Xie ◽  
Xin Tao ◽  
Kaihui Hu ◽  
Shaobin Huang
Vestnik MGSU ◽  
2019 ◽  
pp. 589-602 ◽  
Author(s):  
Tran Ha Quan ◽  
Elena S. Gogina

Introduction. Vietnamese urban municipal wastewater treatment plants are mainly of aeration-type facilities. Nowadays, an aeration-type plant, the Sequencing Batch Reactor (SBR), is widely applied and possesses a number of advantages over traditional systems with suspended activated sludge. Advantages of the SBR are mainly concluded in simplicity of operation, occupied area and cost. There is a number of problems at the wastewater treatment plants; they are connected with supplying only a half of wastewater design amount for the treatment as well as with quality of the purified water that must satisfy requirements of the Vietnamese discharge standard, the Standard A. Therefore, reconstruction and modification of the SBR is the major challenger to ensure the sustained development of large Vietnamese cities and maintenance of ecological balance. Materials and methods. To enhance the efficiency of wastewater purification in the SBR, the experiments were set on reactor reconstruction and modification by two directions: (1) Technological method, i.e. applying the Biochip 25 biocarrier, and (2) Operation method, i.e. adding the anoxic phase in reactor operation cycle. Laboratory tests were conducted for each of the directions, including comparison of a typical reactor with the modified one. Results. The study resulted in obtaining an optimal amount of the BioChip biocarrier material (10 to 20 %) that increased efficiency of wastewater purification by 10 to 20 %. In addition to this, when creating an anoxic phase of the operation cycle, efficiency of nitrogen removal increased by 20 %. When the denitrification occurs under the anoxic conditions, it contributes to stabilization of ammonium nitrogen removal for daily nitrogen loading in reactor of 0.3 to 0.8 TKN kg/sludge kg. Conclusions. The suggested technology provides the quality of treated water corresponding with the Vietnamese Standard A requirements. At the present, it is planned to proceed with the experiment on the base of Vietnamese semi-industrial plant for research and appraisal of the SBR reconstruction and modification method. Acknowledgements. The authors are grateful to AKVA Control company in Samara for granted biocarrier Mutag BioChip 25 and to Associate Professor Tran Van Quang and his students, Nguyen Ngoc Phuong and Truong Quoc Dai, of Environment Protect Research Center, Danang University for support of the experiment.


2014 ◽  
Vol 9 (2) ◽  
pp. 235-242 ◽  
Author(s):  
S. Morling ◽  
A. Franquiz ◽  
J. Måhlgren ◽  
Å. Westlund

A biological wastewater treatment plant, Nynäshamn treating municipal wastewater and septic sludge operated with a combination of sequencing batch reactor (SBR) units and constructed wetland is presented in this paper. The plant has to treat low temperature wastewater in winter time, still with demands for a biological nitrogen removal. Treatment results from a 13 year operation period are presented. Special attention was given to the nutrient removal during low temperature conditions. The combination of a SBR system along with classical chemical precipitation and a polishing step based on ‘natural’ extensive treatment has been a sustainable way to keep the discharge levels low. The combined treatment with SBR and the wetland at the Nynäshamn plant has resulted in improved discharge levels typically as follows (annual mean values); BOD7 3 mg/l, to be compared with the formal consent value of <15 mg/l, total P < 0.1 mg/l, to be compared with the formal consent value of <0.5 mg/l and total N 7 mg/l, to be compared with the formal consent value of <15 mg/l. It is also important to underline that the change of process train has resulted in a substantial saving of the precipitant agent for phosphorus removal. The needed dosage is now 50% of the previous dose, before the implementation of the SBR-units.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Yong Qiu ◽  
Han-chang Shi ◽  
Miao He

Surface water environment in China was degraded rapidly in the last two decades, resulting in increasingly tighten criteria issued for municipal wastewater treatment plants (WWTPs). This paper reviewed the recent advances of process design and operational optimization for nutrients removal. Three major processes, as anaerobic-anoxic-oxic (AAO) process, oxidation ditch (OD), and sequencing batch reactor (SBR) occupied 65% of WWTPs amounts and 54% of treatment volumes of China in 2006. However conservative process designs and operational faults often impaired the process performances and energy efficiency. Therefore, typical processes were modified, combined, and innovated to meet the requirements of the diverse influent characteristics and lower energy consumptions. Furthermore, operational optimization techniques by modeling, simulation, and real-time control were also developed and applied in China to improve the process operation. Although great efforts had been contributed to improve the WWTPs performances in China, attentions should be continuously paid to the introduction, instruction, and implementation of advanced techniques. At last, the technical demands and appropriated techniques of WWTPs in China were briefly discussed.


2014 ◽  
Vol 1030-1032 ◽  
pp. 387-390
Author(s):  
Chun Di Gao ◽  
Shi Xin Fan ◽  
Er Long Jiao ◽  
Hao Li ◽  
Wei Xiao Wang

A novel alternating oxic-anoxic operation mode of shortcut nitrification-denitrification was developed in a sequencing batch reactor at ambient temperature. Operational parameters favorable for maintaining the shortcut nitrification-denitrification were investigated and optimized. The experiments showed that alternating oxic-anoxic shortcut nitrification-denitrification system was able to be an independent treatment process in domestic wastewater treatment. And the optimization approach was so efficient that the main pollutant discharge targets achieved Standard A of the first class in "Discharge standard of pollutants for municipal wastewater treatment plant". Moreover, the reliability of the operation strategy in this experimentation was proved, which indicated the excellent nitrogen removal performances.


Sign in / Sign up

Export Citation Format

Share Document