scholarly journals Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism

PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0190456 ◽  
Author(s):  
Emily Booth Warren ◽  
Aidan Edward Aicher ◽  
Joshua Patrick Fessel ◽  
Christine Konradi
Author(s):  
Jadriane Fontoura Friedrich ◽  
Jessica Tadiello dos Santos ◽  
Ariane Ribas Pohl ◽  
Vivian Shinobu Kishimoto Nishihira ◽  
Morgana Brondani ◽  
...  

Naringin and naringenin are flavonoids found in citrus fruits and have several health benefits, however these compounds are susceptible to degradation, limiting their therapeutic application. To solve this problem, an alternative is to incorporate them into nanocapsules. The aim of this work was to evaluate the toxicity of these nanocapsules against renal and hepatic serum markers and also on the activities of pyruvate kinase, Mg2+-ATPase, and creatine kinase. Nanocapsules containing naringin and naringenin, nanocapsules without the active compounds and the compounds in their free form were administered orally, once a day, for 28 days. After treatment, the serum levels of hepatic and renal markers were not altered, nor the activities of pyruvate kinase tissue, however, the treatment of nanocapsules with flavonoids increased the activities of mitochondrial creatine kinase in the kidney and hepatic Mg2+-ATPase. Thus, renal and hepatic serum markers, which are normally used as indicators of toxicity, did not change after the period of administration of the nanoparticles. However, the activities of important enzymes of the energy metabolism in these organs were affected. Our findings reinforce that nanomaterial testing for toxicity needs to go beyond traditional methods to ensure the safe use of nanoparticles for therapeutic purposes.


Author(s):  
K. S. McCarty ◽  
R. F. Weave ◽  
L. Kemper ◽  
F. S. Vogel

During the prodromal stages of sporulation in the Basidiomycete, Agaricus bisporus, mitochondria accumulate in the basidial cells, zygotes, in the gill tissues prior to entry of these mitochondria, together with two haploid nuclei and cytoplasmic ribosomes, into the exospores. The mitochondria contain prominent loci of DNA [Fig. 1]. A modified Kleinschmidt spread technique1 has been used to evaluate the DNA strands from purified whole mitochondria released by osmotic shock, mitochondrial DNA purified on CsCl gradients [density = 1.698 gms/cc], and DNA purified on ethidium bromide CsCl gradients. The DNA appeared as linear strands up to 25 u in length and circular forms 2.2-5.2 u in circumference. In specimens prepared by osmotic shock, many strands of DNA are apparently attached to membrane fragments [Fig. 2]. When mitochondria were ruptured in hypotonic sucrose and then fixed in glutaraldehyde, the ribosomes were released for electron microscopic examination.


2020 ◽  
Vol 85 (4) ◽  
pp. 895-901
Author(s):  
Takamitsu Amai ◽  
Tomoka Tsuji ◽  
Mitsuyoshi Ueda ◽  
Kouichi Kuroda

ABSTRACT Mitochondrial dysfunction can occur in a variety of ways, most often due to the deletion or mutation of mitochondrial DNA (mtDNA). The easy generation of yeasts with mtDNA deletion is attractive for analyzing the functions of the mtDNA gene. Treatment of yeasts with ethidium bromide is a well-known method for generating ρ° cells with complete deletion of mtDNA from Saccharomyces cerevisiae. However, the mutagenic effects of ethidium bromide on the nuclear genome cannot be excluded. In this study, we developed a “mito-CRISPR system” that specifically generates ρ° cells of yeasts. This system enabled the specific cleavage of mtDNA by introducing Cas9 fused with the mitochondrial target sequence at the N-terminus and guide RNA into mitochondria, resulting in the specific generation of ρ° cells in yeasts. The mito-CRISPR system provides a concise technology for deleting mtDNA in yeasts.


Sign in / Sign up

Export Citation Format

Share Document