scholarly journals Curved TVs improved watching experience when display curvature radii approached viewing distances: Effects of display curvature radius, viewing distance, and lateral viewing position on TV watching experience

PLoS ONE ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. e0228437 ◽  
Author(s):  
Sungryul Park ◽  
Gyouhyung Kyung ◽  
Jihhyeon Yi ◽  
Donghee Choi ◽  
Songil Lee
Author(s):  
Gyouhyung Kyung ◽  
Sungryul Park

Objective The aim of this study is to examine the interactive effects of display curvature radius and display size on visual search accuracy, visual search speed, and visual fatigue. Background Although the advantages of curved displays have been reported, little is known about the interactive effects of display curvature radius and size. Method Twenty-seven individuals performed visual search tasks at a viewing distance of 50 cm using eight configurations involving four display curvature radii (400R, 600R, 1200R, and flat) and two display sizes (33″ and 50″). To simulate curved screens, five flat display panels were horizontally arranged with their centers concentrically repositioned following each display curvature radius. Results For accuracy, speed, and fatigue, 33″–600R and 50″–600R provided the best or comparable-to-best results, whereas 50″–flat provided the worst results. For accuracy and fatigue, 33″–flat was the second worst. The changes in the horizontal field of view and viewing angle due to display curvature as well as the association between effective display curvature radii and empirical horopter (loci of perceived equidistance) can explain these results. Conclusion The interactive effects of display curvature radius and size were evident for visual search performance and fatigue. Beneficial effects of curved displays were maintained across 33″ and 50″, whereas increasing flat display size from 33″ to 50″ was detrimental. Application For visual search tasks at a viewing distance of 50 cm, 33″–600R and 50″ 600R displays are recommended, as opposed to 33″ and 50″ flat displays. Wide flat displays must be carefully considered for visual display terminal tasks.


2016 ◽  
Vol 24 (11) ◽  
pp. 657-668 ◽  
Author(s):  
Daichi Suzuki ◽  
Shuji Hayashi ◽  
Yosuke Hyodo ◽  
Shinichiro Oka ◽  
Takeo Koito ◽  
...  

Author(s):  
A. Kosiara ◽  
J. W. Wiggins ◽  
M. Beer

A magnetic spectrometer to be attached to the Johns Hopkins S. T. E. M. is under construction. Its main purpose will be to investigate electron interactions with biological molecules in the energy range of 40 KeV to 100 KeV. The spectrometer is of the type described by Kerwin and by Crewe Its magnetic pole boundary is given by the equationwhere R is the electron curvature radius. In our case, R = 15 cm. The electron beam will be deflected by an angle of 90°. The distance between the electron source and the pole boundary will be 30 cm. A linear fringe field will be generated by a quadrupole field arrangement. This is accomplished by a grounded mirror plate and a 45° taper of the magnetic pole.


Author(s):  
Neil Charness ◽  
Katinka Dijkstra ◽  
Tiffany Jastrzembski ◽  
Sallie Weaver ◽  
Michael Champion

2020 ◽  
Vol 2020 (15) ◽  
pp. 197-1-197-7
Author(s):  
Alastair Reed ◽  
Vlado Kitanovski ◽  
Kristyn Falkenstern ◽  
Marius Pedersen

Spot colors are widely used in the food packaging industry. We wish to add a watermark signal within a spot color that is readable by a Point Of Sale (POS) barcode scanner which typically has red illumination. Some spot colors such as blue, black and green reflect very little red light and are difficult to modulate with a watermark at low visibility to a human observer. The visibility measurements that have been made with the Digimarc watermark enables the selection of a complementary color to the base color which can be detected by a POS barcode scanner but is imperceptible at normal viewing distance.


Sign in / Sign up

Export Citation Format

Share Document