scholarly journals In vitro hemo- and cytocompatibility of bacterial nanocelluose small diameter vascular grafts: Impact of fabrication and surface characteristics.

PLoS ONE ◽  
2020 ◽  
Vol 15 (6) ◽  
pp. e0235168 ◽  
Author(s):  
Max Wacker ◽  
Viktoria Kießwetter ◽  
Ingo Slottosch ◽  
George Awad ◽  
Adnana Paunel-Görgülü ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1952
Author(s):  
Max Wacker ◽  
Jan Riedel ◽  
Heike Walles ◽  
Maximilian Scherner ◽  
George Awad ◽  
...  

In this study, we contrast the impacts of surface coating bacterial nanocellulose small-diameter vascular grafts (BNC-SDVGs) with human albumin, fibronectin, or heparin–chitosan upon endothelialization with human saphenous vein endothelial cells (VEC) or endothelial progenitor cells (EPC) in vitro. In one scenario, coated grafts were cut into 2D circular patches for static colonization of a defined inner surface area; in another scenario, they were mounted on a customized bioreactor and subsequently perfused for cell seeding. We evaluated the colonization by emerging metabolic activity and the preservation of endothelial functionality by water soluble tetrazolium salts (WST-1), acetylated low-density lipoprotein (AcLDL) uptake assays, and immune fluorescence staining. Uncoated BNC scaffolds served as controls. The fibronectin coating significantly promoted adhesion and growth of VECs and EPCs, while albumin only promoted adhesion of VECs, but here, the cells were functionally impaired as indicated by missing AcLDL uptake. The heparin–chitosan coating led to significantly improved adhesion of EPCs, but not VECs. In summary, both fibronectin and heparin–chitosan coatings could beneficially impact the endothelialization of BNC-SDVGs and might therefore represent promising approaches to help improve the longevity and reduce the thrombogenicity of BNC-SDVGs in the future.


2020 ◽  
Vol 8 (26) ◽  
pp. 5694-5706
Author(s):  
Yizao Wan ◽  
Shanshan Yang ◽  
Mengxia Peng ◽  
Miguel Gama ◽  
Zhiwei Yang ◽  
...  

A novel small-diameter graft consisting of nanofibrous bacterial cellulose and submicrofibrous cellulose acetate was prepared and evaluated in vitro and in vivo.


2019 ◽  
Vol 33 (8) ◽  
pp. 1017-1034 ◽  
Author(s):  
Xiangshun Li ◽  
Huijing Zhao

Small-diameter vascular grafts may fail after implantation due to various reasons from mechanical and biological aspects. In order to evaluate the mechanical durability of small-diameter vascular grafts after implantation, an artificial vascular biomimetic environment that can simulate body temperature, the liquid environment outside the vessel, and continuous blood flow and pulsatile pressure was constructed. This device can be used as a “pre-test” prior to animal experiments to explore the changes of mechanical and degradation properties in the long-term in vivo environment. At the same time, braided tube-reinforced silk fibroin/poly (l-lactic acid-co-ε-caprolactone) small-diameter vascular grafts were fabricated and tested under the biomimetic environment. Mechanical changes, including tensile properties, suture retention strength, compliance, and degradation behavior of the braided tube-reinforced poly (l-lactic acid-co-ε-caprolactone)/silk fibroin small-diameter vascular grafts were explored over various periods of time in the biomimetic environment. The results shown that under a period of testing in the in vitro biomimetic environment, the comprehensive mechanical properties (including tensile properties, suture retention strength, estimated-bursting pressure, and compliance) of small-diameter vascular grafts exhibited varying degrees of changes but that there was no obvious degradation behavior in the short term.


2015 ◽  
Vol 23 (10) ◽  
pp. 924-936 ◽  
Author(s):  
A. Reum Park ◽  
Young-Hwan Park ◽  
Hyun Jeong Kim ◽  
Min-Keun Kim ◽  
Seong-Gon Kim ◽  
...  

2014 ◽  
Vol 20 (12) ◽  
pp. 1016-1027 ◽  
Author(s):  
George Fercana ◽  
Devon Bowser ◽  
Margarita Portilla ◽  
Eugene M. Langan ◽  
Christopher G. Carsten ◽  
...  

2020 ◽  
Vol 26 (23-24) ◽  
pp. 1388-1401
Author(s):  
Megan Kimicata ◽  
Prateek Swamykumar ◽  
John P. Fisher

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 713
Author(s):  
Shu Fang ◽  
Ditte Gry Ellman ◽  
Ditte Caroline Andersen

To date, a wide range of materials, from synthetic to natural or a mixture of these, has been explored, modified, and examined as small-diameter tissue-engineered vascular grafts (SD-TEVGs) for tissue regeneration either in vitro or in vivo. However, very limited success has been achieved due to mechanical failure, thrombogenicity or intimal hyperplasia, and improvements of the SD-TEVG design are thus required. Here, in vivo studies investigating novel and relative long (10 times of the inner diameter) SD-TEVGs in large animal models and humans are identified and discussed, with emphasis on graft outcome based on model- and graft-related conditions. Only a few types of synthetic polymer-based SD-TEVGs have been evaluated in large-animal models and reflect limited success. However, some polymers, such as polycaprolactone (PCL), show favorable biocompatibility and potential to be further modified and improved in the form of hybrid grafts. Natural polymer- and cell-secreted extracellular matrix (ECM)-based SD-TEVGs tested in large animals still fail due to a weak strength or thrombogenicity. Similarly, native ECM-based SD-TEVGs and in-vitro-developed hybrid SD-TEVGs that contain xenogeneic molecules or matrix seem related to a harmful graft outcome. In contrast, allogeneic native ECM-based SD-TEVGs, in-vitro-developed hybrid SD-TEVGs with allogeneic banked human cells or isolated autologous stem cells, and in-body tissue architecture (IBTA)-based SD-TEVGs seem to be promising for the future, since they are suitable in dimension, mechanical strength, biocompatibility, and availability.


Sign in / Sign up

Export Citation Format

Share Document