scholarly journals Analysis of English free association network reveals mechanisms of efficient solution of Remote Association Tests

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0248986
Author(s):  
Olga Valba ◽  
Alexander Gorsky ◽  
Sergei Nechaev ◽  
Mikhail Tamm

We study correlations between the structure and properties of a free association network of the English language, and solutions of psycholinguistic Remote Association Tests (RATs). We show that average hardness of individual RATs is largely determined by relative positions of test words (stimuli and response) on the free association network. We argue that the solution of RATs can be interpreted as a first passage search problem on a network whose vertices are words and links are associations between words. We propose different heuristic search algorithms and demonstrate that in “easily-solving” RATs (those that are solved in 15 seconds by more than 64% subjects) the solution is governed by “strong” network links (i.e. strong associations) directly connecting stimuli and response, and thus the efficient strategy consist in activating such strong links. In turn, the most efficient mechanism of solving medium and hard RATs consists of preferentially following sequence of “moderately weak” associations.

2020 ◽  
Vol 34 (03) ◽  
pp. 2327-2334
Author(s):  
Vidal Alcázar ◽  
Pat Riddle ◽  
Mike Barley

In the past few years, new very successful bidirectional heuristic search algorithms have been proposed. Their key novelty is a lower bound on the cost of a solution that includes information from the g values in both directions. Kaindl and Kainz (1997) proposed measuring how inaccurate a heuristic is while expanding nodes in the opposite direction, and using this information to raise the f value of the evaluated nodes. However, this comes with a set of disadvantages and remains yet to be exploited to its full potential. Additionally, Sadhukhan (2013) presented BAE∗, a bidirectional best-first search algorithm based on the accumulated heuristic inaccuracy along a path. However, no complete comparison in regards to other bidirectional algorithms has yet been done, neither theoretical nor empirical. In this paper we define individual bounds within the lower-bound framework and show how both Kaindl and Kainz's and Sadhukhan's methods can be generalized thus creating new bounds. This overcomes previous shortcomings and allows newer algorithms to benefit from these techniques as well. Experimental results show a substantial improvement, up to an order of magnitude in the number of necessarily-expanded nodes compared to state-of-the-art near-optimal algorithms in common benchmarks.


2019 ◽  
Vol 34 (21) ◽  
pp. 1950169
Author(s):  
Aihan Yin ◽  
Kemeng He ◽  
Ping Fan

Among many classic heuristic search algorithms, the Grover quantum search algorithm (QSA) can play a role of secondary acceleration. Based on the properties of the two-qubit Grover QSA, a quantum dialogue (QD) protocol is proposed. In addition, our protocol also utilizes the unitary operations and single-particle measurements. The transmitted quantum state (except for the decoy state used for detection) can transmit two-bits of security information simultaneously. Theoretical analysis shows that the proposed protocol has high security.


2020 ◽  
Vol 34 (06) ◽  
pp. 9827-9834
Author(s):  
Maximilian Fickert ◽  
Tianyi Gu ◽  
Leonhard Staut ◽  
Wheeler Ruml ◽  
Joerg Hoffmann ◽  
...  

Suboptimal heuristic search algorithms can benefit from reasoning about heuristic error, especially in a real-time setting where there is not enough time to search all the way to a goal. However, current reasoning methods implicitly or explicitly incorporate assumptions about the cost-to-go function. We consider a recent real-time search algorithm, called Nancy, that manipulates explicit beliefs about the cost-to-go. The original presentation of Nancy assumed that these beliefs are Gaussian, with parameters following a certain form. In this paper, we explore how to replace these assumptions with actual data. We develop a data-driven variant of Nancy, DDNancy, that bases its beliefs on heuristic performance statistics from the same domain. We extend Nancy and DDNancy with the notion of persistence and prove their completeness. Experimental results show that DDNancy can perform well in domains in which the original assumption-based Nancy performs poorly.


Author(s):  
Yaniv Dover ◽  
Zohar Moore

The dynamics of human affect in day-to-day life are an intrinsic part of human behaviour. Yet, it is difficult to observe and objectively measure how affect evolves over time with sufficient resolution. Here, we suggest an approach that combines free association networks with affect mapping, to gain insight into basic patterns of affect dynamics. This approach exploits the established connection in the literature between association networks and behaviour. Using extant rich data, we find consistent patterns of the dynamics of the valence and arousal dimensions of affect. First, we find that the individuals represented by the data tend to feel a constant pull towards an affect-neutral global equilibrium point in the valence–arousal space. The farther the affect is from that point, the stronger the pull. We find that the drift of affect exhibits high inertia, i.e. is slow-changing, but with occasional discontinuous jumps of valence. We further find that, under certain conditions, another metastable equilibrium point emerges on the network, but one which represents a much more negative and agitated state of affect. Finally, we demonstrate how the affect-coded association network can be used to identify useful or harmful trajectories of associative thoughts that otherwise are hard to extract.


2019 ◽  
Vol 172 ◽  
pp. 264-293 ◽  
Author(s):  
Luis Emiliano Sánchez ◽  
Jorge Andrés Diaz-Pace ◽  
Alejandro Zunino

2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Zheng-Cai Lu ◽  
Zheng Qin ◽  
Qiao Jing ◽  
Lai-Xiang Shan

Attribute reduction is one of the challenging problems facing the effective application of computational intelligence technology for artificial intelligence. Its task is to eliminate dispensable attributes and search for a feature subset that possesses the same classification capacity as that of the original attribute set. To accomplish efficient attribute reduction, many heuristic search algorithms have been developed. Most of them are based on the model that the approximation of all the target concepts associated with a decision system is dividable into that of a single target concept represented by a pair of definable concepts known as lower and upper approximations. This paper proposes a novel model called macroscopic approximation, considering all the target concepts as an indivisible whole to be approximated by rough set boundary region derived from inconsistent tolerance blocks, as well as an efficient approximation framework called positive macroscopic approximation (PMA), addressing macroscopic approximations with respect to a series of attribute subsets. Based on PMA, a fast heuristic search algorithm for attribute reduction in incomplete decision systems is designed and achieves obviously better computational efficiency than other available algorithms, which is also demonstrated by the experimental results.


Sign in / Sign up

Export Citation Format

Share Document