scholarly journals Correction: Genetic diversity of Ethiopian cocoyam (Xanthosoma sagittifolium (L.) Schott) accessions as revealed by morphological traits and SSR markers

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253993
Author(s):  
Eyasu Wada ◽  
Tileye Feyissa ◽  
Kassahun Tesfaye ◽  
Zemede Asfaw ◽  
Daniel Potter
PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245120
Author(s):  
Eyasu Wada ◽  
Tileye Feyissa ◽  
Kassahun Tesfaye ◽  
Zemede Asfaw ◽  
Daniel Potter

Cocoyam (Xanthosoma sagittifolium (L.) Schott) is an exotic species from tropical America that is widely cultivated in Ethiopia for its edible cormels and leaves. There is a dearth of information on the genetic diversity of Ethiopian cocoyam. In order to evaluate and select cocoyam germplasm for breeding and conservation, genetic diversity of 100 Ethiopian cocoyam accessions (65 green- and 35 purple- cocoyam) were analyzed using 29 morphological traits (16 qualitative and 13 quantitative) and 12 SSR loci. Two classes of qualitative traits were observed. ANOVA revealed significant variation in 11 (84.6%) of the 13 studied quantitative traits. The SSR marker analysis showed high genetic diversity. A total of 36 alleles were detected with a range of 2 to 5 (average of 3.273) alleles per locus. The average observed heterozygosity (Ho) and expected heterozygosity (He) values across populations were 0.503 and 0.443, respectively. The analysis of molecular variance showed that the variation among populations, among individuals within populations, and within individuals explained 14%, 18%, and 68% of the total variation, respectively. Cluster analysis grouped the accessions irrespective of the collection sites. A dendrogram based on Nei’s standard genetic distance grouped the green cocoyam accessions together while the purple cocoyam accessions occupied a separate position within the dendrogram. Significant variation in quantitative traits and the high level of genetic diversity revealed by the SSR markers suggest that diverse cocoyam accessions, probably with multiple lineage, were introduced multiple times, through multiple routes and probably by multiple agents, an hypothesis that needs futher testing and analyis. The crop, therefore, needs more research efforts commensurate with its economic and social values than it has been accorded thus far. Further study is recommended to clarify the taxonomic status of Ethiopian cocoyam accesions and to trace their evolutionary relationships with Xanthosoma species elsewhere.


2019 ◽  
pp. 171-182
Author(s):  
M. Nefzaoui ◽  
M.A. Lira ◽  
S.M. Udupa ◽  
M. Louhaichi ◽  
M. Boujghagh ◽  
...  

Author(s):  
Narendra Singh Rajpoot ◽  
M. K. Tripathi ◽  
Sushma Tiwari ◽  
R. S. Tomar ◽  
V. S. Kandalkar

The genus Brassica is one of the most important oil seed crops in India with high degree of genetic diversity. In present study, genetic diversity was studied in forty germplasm lines and eight cultivars of Indian mustard using morphological traits and SSR markers. Morphological characters were taken for days to 50% flowering, days to maturity, plant height (cm), length of main raceme (cm), number of primary branches/plant, number of secondary branches/plant, number of silique per plant, number of seeds per silique, 1000 seed weight (g) and seed yield per plant (g). Total 50 SSR markers were used for characterization of these lines, out of which 7 SSR markers were highly polymorphic between all the germplasms of mustard. An UPGMA phonogram was constructed for all 48 Germplasms and the similarity coefficient ranged from 0.00 to 0.91. Number of alleles ranged from 3 to 4, genetic diversity ranged from 71% to 65% with average value of 67%, heterozygosity raged from 20 to 10% with average of 12% and PIC value for markers ranged from 0.65 to 0.59 with mean PIC value 0.61. All seven SSR primers showed PIC value above 0.5 (50%) indicating high genetic diversity in the studied plant material.


2014 ◽  
Vol 66 ◽  
pp. 81-92 ◽  
Author(s):  
Min Jung Yook ◽  
Soo-Hyun Lim ◽  
Jong-Seok Song ◽  
Jin-Won Kim ◽  
Chuan-Jie Zhang ◽  
...  

2010 ◽  
Vol 61 (3) ◽  
pp. 230 ◽  
Author(s):  
Rajan Sharma ◽  
S. P. Deshpande ◽  
S. Senthilvel ◽  
V. P. Rao ◽  
V. Rajaram ◽  
...  

Allelic variation at 46 simple sequence repeat (SSR) marker loci well distributed across the sorghum genome was used to assess genetic diversity among 92 sorghum lines, 74 resistant and 18 susceptible to grain mould. Of the 46 SSR markers, 44 were polymorphic, with the number of alleles ranging from 2 to 20 with an average of 7.55 alleles per locus. Genetic diversity among the sorghum lines was high as indicated by polymorphic information content (PIC) and gene diversity values. PIC values of polymorphic SSR markers ranged from 0.16 to 0.90, with an average of 0.54. Gene diversity among the sorghum lines varied from 0.16 to 0.91, with an average score of 0.58 per SSR marker. AMOVA indicated that 12% of the total variation observed among the sorghum lines was accounted for between grain mould resistant and susceptible types. Diversity based on six morphological traits and grain mould scores indicated major roles of panicle type and glumes coverage, followed by grain colour, in clustering of the lines. Seven grain mould resistant/susceptible pairs with dissimilarity indices >0.50, but with similar flowering time, plant height, and panicle type/inflorescence within each pair, were selected for use in developing recombinant inbred line mapping populations to identify genomic regions (and quantitative trait loci) associated with sorghum grain mould resistance.


2017 ◽  
Vol 9 (22) ◽  
pp. 14-22
Author(s):  
Fereshteh Honari ◽  
Saeid Vessal ◽  
Nad Ali Babaean Jelodar ◽  
Nad ali Bagheri ◽  
◽  
...  

Author(s):  
Shalini Singh ◽  
B. Singh ◽  
V.R. Sharma ◽  
M. Kumar ◽  
U. Sirohi

Background: The study was undertaken to assess the genetic diversity and genetic structure among fifty-five pea accessions using morphological traits and SSR markers. Methods: A total of 55 pea accessions were analyzed using eleven phenotypic traits and twenty SSR markers. The data obtained by morphological and molecular profiling was used for the analysis of genetic diversity and for the estimation of genetic diversity estimates, correlation, principal components analysis and population structure. Result: This study reveals that majority of genetic variation was due to variation within population and were clustered into two distinct groups, which reveals a high admixture within individuals. Accessions viz., VRP-82, VRP-320, VRP-194, VRP-375, EC-97280 and EC-8724, showed great diversity as compared to the other accessions based on both morphological and molecular markers. These accessions may assist in developing and planning breeding strategies aimed to produce new varieties in the future.


2016 ◽  
Vol 26 (3) ◽  
pp. 282-292 ◽  
Author(s):  
Ajay Kumar Thakur ◽  
Kunwar Harendra Singh ◽  
Lal Singh ◽  
Joghee Nanjundan ◽  
Yasin Jeshima Khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document