scholarly journals Holistic processing only? The role of the right fusiform face area in radiological expertise

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256849
Author(s):  
Ellen M. Kok ◽  
Bettina Sorger ◽  
Koos van Geel ◽  
Andreas Gegenfurtner ◽  
Jeroen J. G. van Merriënboer ◽  
...  

Radiologists can visually detect abnormalities on radiographs within 2s, a process that resembles holistic visual processing of faces. Interestingly, there is empirical evidence using functional magnetic resonance imaging (fMRI) for the involvement of the right fusiform face area (FFA) in visual-expertise tasks such as radiological image interpretation. The speed by which stimuli (e.g., faces, abnormalities) are recognized is an important characteristic of holistic processing. However, evidence for the involvement of the right FFA in holistic processing in radiology comes mostly from short or artificial tasks in which the quick, ‘holistic’ mode of diagnostic processing is not contrasted with the slower ‘search-to-find’ mode. In our fMRI study, we hypothesized that the right FFA responds selectively to the ‘holistic’ mode of diagnostic processing and less so to the ‘search-to-find’ mode. Eleven laypeople and 17 radiologists in training diagnosed 66 radiographs in 2s each (holistic mode) and subsequently checked their diagnosis in an extended (10-s) period (search-to-find mode). During data analysis, we first identified individual regions of interest (ROIs) for the right FFA using a localizer task. Then we employed ROI-based ANOVAs and obtained tentative support for the hypothesis that the right FFA shows more activation for radiologists in training versus laypeople, in particular in the holistic mode (i.e., during 2s trials), and less so in the search-to-find mode (i.e., during 10-s trials). No significant correlation was found between diagnostic performance (diagnostic accuracy) and brain-activation level within the right FFA for both, short-presentation and long-presentation diagnostic trials. Our results provide tentative evidence from a diagnostic-reasoning task that the FFA supports the holistic processing of visual stimuli in participants’ expertise domain.

2010 ◽  
Vol 104 (1) ◽  
pp. 336-345 ◽  
Author(s):  
Alison Harris ◽  
Geoffrey Karl Aguirre

Although the right fusiform face area (FFA) is often linked to holistic processing, new data suggest this region also encodes part-based face representations. We examined this question by assessing the metric of neural similarity for faces using a continuous carryover functional MRI (fMRI) design. Using faces varying along dimensions of eye and mouth identity, we tested whether these axes are coded independently by separate part-tuned neural populations or conjointly by a single population of holistically tuned neurons. Consistent with prior results, we found a subadditive adaptation response in the right FFA, as predicted for holistic processing. However, when holistic processing was disrupted by misaligning the halves of the face, the right FFA continued to show significant adaptation, but in an additive pattern indicative of part-based neural tuning. Thus this region seems to contain neural populations capable of representing both individual parts and their integration into a face gestalt. A third experiment, which varied the asymmetry of changes in the eye and mouth identity dimensions, also showed part-based tuning from the right FFA. In contrast to the right FFA, the left FFA consistently showed a part-based pattern of neural tuning across all experiments. Together, these data support the existence of both part-based and holistic neural tuning within the right FFA, further suggesting that such tuning is surprisingly flexible and dynamic.


2019 ◽  
Vol 31 (10) ◽  
pp. 1573-1588 ◽  
Author(s):  
Eelke de Vries ◽  
Daniel Baldauf

We recorded magnetoencephalography using a neural entrainment paradigm with compound face stimuli that allowed for entraining the processing of various parts of a face (eyes, mouth) as well as changes in facial identity. Our magnetic response image-guided magnetoencephalography analyses revealed that different subnodes of the human face processing network were entrained differentially according to their functional specialization. Whereas the occipital face area was most responsive to the rate at which face parts (e.g., the mouth) changed, and face patches in the STS were mostly entrained by rhythmic changes in the eye region, the fusiform face area was the only subregion that was strongly entrained by the rhythmic changes in facial identity. Furthermore, top–down attention to the mouth, eyes, or identity of the face selectively modulated the neural processing in the respective area (i.e., occipital face area, STS, or fusiform face area), resembling behavioral cue validity effects observed in the participants' RT and detection rate data. Our results show the attentional weighting of the visual processing of different aspects and dimensions of a single face object, at various stages of the involved visual processing hierarchy.


2010 ◽  
Vol 10 (7) ◽  
pp. 493-493 ◽  
Author(s):  
D. D. Dilks ◽  
E. Dechter ◽  
C. Triantafyllou ◽  
B. Keil ◽  
L. L. Wald ◽  
...  

2019 ◽  
Author(s):  
Niv Reggev ◽  
Kirstan Brodie ◽  
Mina Cikara ◽  
Jason Mitchell

People often fail to individuate members of social outgroups, a phenomenon known as the outgroup homogeneity effect. Here, we used fMRI repetition suppression to investigate the neural representation underlying this effect. In a pre-registered study, White human perceivers (N = 29) responded to pairs of faces depicting White or Black targets. In each pair, the second face depicted either the same target as the first face, a different target from the same race, or a scrambled face outline. We localized face-selective neural regions via an independent task, and demonstrated that neural activity in the fusiform face area distinguished different faces only when targets belonged to the perceivers’ racial ingroup (White). By contrast, face-selective cortex did not discriminate between other-race individuals. Moreover, across two studies (total N = 67) perceivers were slower to discriminate between different outgroup members and remembered them to a lesser extent. Together, these results suggest that the outgroup homogeneity effect arises when early-to-mid-level visual processing results in an erroneous overlap of representations of outgroup members.


2011 ◽  
Vol 23 (11) ◽  
pp. 3343-3354 ◽  
Author(s):  
Jay J. Van Bavel ◽  
Dominic J. Packer ◽  
William A. Cunningham

Studies have shown that fusiform face area (FFA) activity increases with visual expertise. We present an fMRI study showing that faces from a social category made relevant by an experimental manipulation (members of an experimentally created in-group) preferentially recruited the FFA even when they were matched in exposure to face stimuli from a less significant social category (members of an experimentally created out-group). Faces were randomly assigned to groups and fully counterbalanced so that no perceptual cues allowed participants to visually distinguish category membership. The results revealed a pattern of in-group enhancement (not out-group disregard), such that the FFA was selectively engaged following the presentation of in-group compared with out-group or unaffiliated control faces even when the intergroup distinction was arbitrary, and exposure to in-group and out-group faces was equivalent and brief. In addition, individual differences in FFA activity for in-group versus out-group faces were correlated with recognition memory differences for in-group and out-group faces. The effects of group membership on the FFA were not affected by task instruction to respond to in-group or out-group members and were functionally dissociated from early visual processing in the primary visual cortex. This study provides evidence that the FFA is sensitive to top–down influences and may be involved in subordinate level (vs. superordinate level) encoding of stimuli in the absence of long-term exposure or explicit task instructions.


2008 ◽  
Vol 14 (6) ◽  
pp. 922-932 ◽  
Author(s):  
SUSAN Y. BOOKHEIMER ◽  
A. TING WANG ◽  
ASHLEY SCOTT ◽  
MARIAN SIGMAN ◽  
MIRELLA DAPRETTO

AbstractFunctional neuroimaging studies of face processing deficits in autism have typically focused on visual processing regions, such as the fusiform face area (FFA), which have shown reduced activity in autism spectrum disorders (ASD), though inconsistently. We recently reported reduced activity in the inferior frontal region in ASD, implicating impaired mirror-neuron systems during face processing. In the present study, we used fMRI during a face processing task in which subjects had to match faces presented in the upright versus inverted position. Typically developing (TD) children showed a classic behavioral inversion effect, increased reaction time for inverted faces, while this effect was significantly reduced in ASD subjects. The fMRI data showed similar responses in the fusiform face area for ASD and TD children, with both groups demonstrating increased activation for inverted faces. However, the groups did differ in several brain regions implicated in social cognition, particularly prefrontal cortex and amygdala. These data suggest that the behavioral differences in processing upright versus inverted faces for TD children are related not to visual information processing but to the social significance of the stimuli. Our results are consistent with other recent studies implicating frontal and limbic dysfunction during face processing in autism. (JINS, 2008, 14, 922–932.)


Author(s):  
Guifei Zhou ◽  
Jiangang Liu ◽  
Naiqi G. Xiao ◽  
Si Jia Wu ◽  
Hong Li ◽  
...  

2012 ◽  
Vol 24 (4) ◽  
pp. 1006-1017 ◽  
Author(s):  
Sara C. Verosky ◽  
Nicholas B. Turk-Browne

A quintessential example of hemispheric specialization in the human brain is that the right hemisphere is specialized for face perception. However, because the visual system is organized contralaterally, what happens when faces appear in the right visual field and are projected to the nonspecialized left hemisphere? We used divided field presentation and fMRI adaptation to test the hypothesis that the left hemisphere can recognize faces, but only with support from the right hemisphere. Consistent with this hypothesis, facial identity adaptation was observed in the left fusiform face area when a face had previously been processed by the right hemisphere, but not when it had only been processed by the left hemisphere. These results imply that facial identity information is transferred from the right hemisphere to the left hemisphere, and that the left hemisphere can represent facial identity but is less efficient at extracting this information by itself.


2019 ◽  
Vol 19 (10) ◽  
pp. 115a
Author(s):  
Edwin J Burns ◽  
Cindy Bukach

Sign in / Sign up

Export Citation Format

Share Document