scholarly journals New highly antigenic linear B cell epitope peptides from PvAMA-1 as potential vaccine candidates

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258637
Author(s):  
Raianna F. Fantin ◽  
Vanessa G. Fraga ◽  
Camila A. Lopes ◽  
Isabella C. de Azevedo ◽  
João L. Reis-Cunha ◽  
...  

Peptide-based vaccines have demonstrated to be an important way to induce long-lived immune responses and, therefore, a promising strategy in the rational of vaccine development. As to malaria, among the classic vaccine targets, the Apical membrane antigen (AMA-1) was proven to have important B cell epitopes that can induce specific immune response and, hence, became key players for a vaccine approach. The peptides selection was carried out using a bioinformatic approach based on Hidden Markov Models profiles of known antigens and propensity scale methods based on hydrophilicity and secondary structure prediction. The antigenicity of the selected B-cell peptides was assessed by multiple serological assays using sera from acute P.vivax infected subjects. The synthetic peptides were recognized by 45.5%, 48.7% and 32.2% of infected subjects for peptides I, II and III respectively. Moreover, when synthetized together (tripeptide), the reactivity increases up to 62%, which is comparable to the reactivity found against the whole protein PvAMA-1 (57%). Furthermore, IgG reactivity against the tripeptide after depletion was reduced by 42%, indicating that these epitopes may be responsible for a considerable part of the protein immunogenicity. These results represent an excellent perspective regarding future chimeric vaccine constructions that may come to contemplate several targets with the potential to generate the robust and protective immune response that a vivax malaria vaccine needs to succeed.

2017 ◽  
Vol 8 ◽  
Author(s):  
Rodrigo Nunes Rodrigues-da-Silva ◽  
Isabela Ferreira Soares ◽  
Cesar Lopez-Camacho ◽  
João Hermínio Martins da Silva ◽  
Daiana de Souza Perce-da-Silva ◽  
...  

1993 ◽  
Vol 30 (8) ◽  
pp. 733-739 ◽  
Author(s):  
Jean-Pierre Y. Scheerlinck ◽  
Robert Deleys ◽  
Eric Saman ◽  
Lea Brys ◽  
Anja Geldhof ◽  
...  

Vaccine ◽  
2009 ◽  
Vol 27 (5) ◽  
pp. 733-740 ◽  
Author(s):  
Zhengqiong Chen ◽  
Wei He ◽  
Zhiqing Liang ◽  
Ping Yan ◽  
Haiyang He ◽  
...  

2009 ◽  
Vol 25 (12) ◽  
pp. 828-838 ◽  
Author(s):  
Ping Yan ◽  
Wei He ◽  
Zhiqing Liang ◽  
Zhengqiong Chen ◽  
Xiaoyun Shang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kanokporn Polyiam ◽  
Waranyoo Phoolcharoen ◽  
Namphueng Butkhot ◽  
Chanya Srisaowakarn ◽  
Arunee Thitithanyanont ◽  
...  

AbstractSARS-CoV-2 continues to infect an ever-expanding number of people, resulting in an increase in the number of deaths globally. With the emergence of new variants, there is a corresponding decrease in the currently available vaccine efficacy, highlighting the need for greater insights into the viral epitope profile for both vaccine design and assessment. In this study, three immunodominant linear B cell epitopes in the SARS-CoV-2 spike receptor-binding domain (RBD) were identified by immunoinformatics prediction, and confirmed by ELISA with sera from Macaca fascicularis vaccinated with a SARS-CoV-2 RBD subunit vaccine. Further immunoinformatics analyses of these three epitopes gave rise to a method of linear B cell epitope prediction and selection. B cell epitopes in the spike (S), membrane (M), and envelope (E) proteins were subsequently predicted and confirmed using convalescent sera from COVID-19 infected patients. Immunodominant epitopes were identified in three regions of the S2 domain, one region at the S1/S2 cleavage site and one region at the C-terminus of the M protein. Epitope mapping revealed that most of the amino acid changes found in variants of concern are located within B cell epitopes in the NTD, RBD, and S1/S2 cleavage site. This work provides insights into B cell epitopes of SARS-CoV-2 as well as immunoinformatics methods for B cell epitope prediction, which will improve and enhance SARS-CoV-2 vaccine development against emergent variants.


2020 ◽  
Author(s):  
Lin Li ◽  
Zhongpeng Zhao ◽  
Xiaolan Yang ◽  
WenDong Li ◽  
Shaolong Chen ◽  
...  

SARS-CoV-2 unprecedentedly threatens the public health at worldwide level. There is an urgent need to develop an effective vaccine within a highly accelerated time. Here, we present the most comprehensive S-protein-based linear B-cell epitope candidate list by combining epitopes predicted by eight widely-used immune-informatics methods with the epitopes curated from literature published between Feb 6, 2020 and July 10, 2020. We find four top prioritized linear B-cell epitopes in the hotspot regions of S protein can specifically bind with serum antibodies from horse, mouse, and monkey inoculated with different SARS-CoV-2 vaccine candidates or a patient recovering from COVID-19. The four linear B-cell epitopes can induce neutralizing antibodies against both pseudo and live SARS-CoV-2 virus in immunized wild-type BALB/c mice. This study suggests that the four linear B-cell epitopes are potentially important candidates for serological assay or vaccine development.


Sign in / Sign up

Export Citation Format

Share Document