scholarly journals Challenges for China to achieve carbon neutrality and carbon peak goals: Beijing case study

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258691
Author(s):  
Junfeng Hu ◽  
Jiang Wu ◽  
Chuan Zhao ◽  
Peng Wang

China has set a goal to achieve peak CO2 emissions before 2030 and carbon neutrality by 2060. To achieve the goals of carbon peak and carbon neutrality, China needs to address the challenge of the large and still growing CO2 emission base. This paper investigated the energy consumption and CO2 emission in Beijing from 2020–2035 based on the energy elasticity coefficient and contribution value of the sub-energy increment (CVSI) method. Beijing is one of the first cities in China to propose the "carbon peak” target as of 2020. From 2020 Beijing will strive to achieve the goal of carbon neutrality. The results show that in 2035 the CO2 emission in Beijing may drop to 50% of 2020. This decline would be affected by economic growth, energy efficiency and the proportion of renewable energy use. Beijing’s energy supply mainly comes from outside the region. Therefore, for Beijing, in addition to increasing the proportion of renewable energy sources outside the region, its own energy acceptance also needs to be strengthened, including strengthening energy storage construction, actively researching and promoting carbon capture and utilization of gas-fired units, which are effective ways to achieve carbon neutrality target.

Author(s):  
Seyedeh Asra Ahmadi ◽  
Seyed Mojtaba Mirlohi ◽  
Mohammad Hossein Ahmadi ◽  
Majid Ameri

Abstract Lack of investment in the electricity sector has created a huge bottleneck in the continuous flow of energy in the market, and this will create many problems for the sustainable growth and development of modern society. The main reason for this lack of investment is the investment risk in the electricity sector. One way to reduce portfolio risk is to diversify it. This study applies the concept of portfolio optimization to demonstrate the potential for greater use of renewable energy, which reduces the risk of investing in the electricity sector. Besides, it shows that investing in renewable energies can offset the risk associated with the total input costs. These costs stem from the volatility of associated prices, including fossil fuel, capital costs, maintenance, operation and environmental costs. This case study shows that Iran can theoretically supply ~33% of its electricity demand from renewable energy sources compared to its current 15% share. This case study confirms this finding and predicts that Iran, while reducing the risk of investing in electricity supply, can achieve a renewable energy supply of ~9% with an average increase in supply costs. Sensitivity analysis further shows that with a 10% change in input cost factors, the percentage of renewable energy supply is only partially affected, but basket costs change according to the scenario of 5–32%. Finally, suggestions are made that minimize risk rather than cost, which will bring about an increase in renewable energy supply.


1992 ◽  
Vol 3 (4) ◽  
pp. 430-443 ◽  
Author(s):  
Ruud Pleune

Present energy use - largely dependent on fossil fuels - is incompatible with the sustainable world concept. In a sustainable world, energy sources are renewable and used in a way that damage to the environment is minimalized. This study investigates the possibility of a sustainable world using renewable energy sources. It appears that - when strict energy conservation is applied - such a sustainable world seems to be attainable. This requires, however, drastic changes in most parts of society.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 431
Author(s):  
Nur Najihah Abu Bakar ◽  
Josep M. Guerrero ◽  
Juan C. Vasquez ◽  
Najmeh Bazmohammadi ◽  
Muzaidi Othman ◽  
...  

Microgrids are among the promising green transition technologies that will provide enormous benefits to the seaports to manage major concerns over energy crises, environmental challenges, and economic issues. However, creating a good design for the seaport microgrid is a challenging task, considering different objectives, constraints, and uncertainties involved. To ensure the optimal operation of the system, determining the right microgrid configuration and component size at minimum cost is a vital decision at the design stage. This paper aims to design a hybrid system for a seaport microgrid with optimally sized components. The selected case study is the Port of Aalborg, Denmark. The proposed grid-connected structure consists of renewable energy sources (photovoltaic system and wind turbines), an energy storage system, and cold ironing facilities. The seaport architecture is then optimized by utilizing HOMER to meet the maximum load demand by considering important parameters such as solar global horizontal irradiance, temperature, and wind resources. Finally, the best configuration is analyzed in terms of economic feasibility, energy reliability, and environmental impacts.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 573
Author(s):  
Mohamed Mokhtar ◽  
Mostafa I. Marei ◽  
Mariam A. Sameh ◽  
Mahmoud A. Attia

The frequency of power systems is very sensitive to load variations. Additionally, with the increased penetration of renewable energy sources in electrical grids, stabilizing the system frequency becomes more challenging. Therefore, Load Frequency Control (LFC) is used to keep the frequency within its acceptable limits. In this paper, an adaptive controller is proposed to enhance the system performance under load variations. Moreover, the proposed controller overcomes the disturbances resulting from the natural operation of the renewable energy sources such as Wave Energy Conversion System (WECS) and Photovoltaic (PV) system. The superiority of the proposed controller compared to the classical LFC schemes is that it has auto tuned parameters. The validation of the proposed controller is carried out through four case studies. The first case study is dedicated to a two-area LFC system under load variations. The WECS is considered as a disturbance for the second case study. Moreover, to demonstrate the superiority of the proposed controller, the dynamic performance is compared with previous work based on an optimized controller in the third case study. Finally in the fourth case study, a sensitivity analysis is carried out through parameters variations in the nonlinear PV-thermal hybrid system. The novel application of the adaptive controller into the LFC leads to enhance the system performance under disturbance of different sources of renewable energy. Moreover, a robustness test is presented to validate the reliability of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document