scholarly journals In silico repurposing of a Novobiocin derivative for activity against latency associated Mycobacterium tuberculosis drug target nicotinate-nucleotide adenylyl transferase (Rv2421c)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259348
Author(s):  
Ruben Cloete ◽  
Mohd Shahbaaz ◽  
Melanie Grobbelaar ◽  
Samantha L. Sampson ◽  
Alan Christoffels

Nicotinamide-nucleotide adenylyl transferase (Rv2421c) was selected as a potential drug target, because it has been shown, in vitro, to be essential for Mycobacterium tuberculosis growth. It is conserved between mycobacterium species, is up-regulated during dormancy, has a known 3D crystal structure and has no known human homologs. A model of Rv2421c in complex with nicotinic acid adenine dinucleotide and magnesium ion was constructed and subject tovirtual ligand screening against the Prestwick Chemical Library and the ZINC database, which yielded 155 potential hit molecules. Of the 155 compounds identified five were pursued further using an IC50 based 3D-QSAR study. The 3D-QSAR model validated the inhibition properties of the five compounds based on R2 value of 0.895 and Q2 value of 0.944 compared to known inhibitors of Rv2421c. Higher binding affinities was observed for the novel ZINC13544129 and two FDA approved compounds (Novobiocin sodium salt, Sulfasalazine). Similarly, the total interaction energy was found to be the highest for Cromolyn disodium system (-418.88 kJ/mol) followed by Novobiocin (-379.19 kJ/mol) and Sulfasalazine with (-330.13 kJ/mol) compared to substrate DND having (-185.52 kJ/mol). Subsequent in vitro testing of the five compounds identified Novobiocin sodium salt with activity against Mycobacterium tuberculosis at 50 μM, 25μM and weakly at 10μM concentrations. Novobiocin salt interacts with a MG ion and active site residues His20, Thr86, Gly107 and Leu164 similar to substrate DND of Mycobacterium tuberculosis Rv2421c. Additional in silico structural analysis of known Novobiocin sodium salt derivatives against Rv2421c suggest Coumermycin as a promising alternative for the treatment of Mycobacterium tuberculosis based on large number of hydrogen bond interactions with Rv2421c similar in comparison to Novobiocin salt and substrate DND.

2020 ◽  
Author(s):  
Ruben Cloete ◽  
Mohd Shahbaaz ◽  
Melanie Grobbelaar ◽  
Samantha L. Sampson ◽  
Alan Christoffels

Nicotinamide-nucleotide adenylyl transferase (Rv2421c) was selected as a potential drug target, because it has been shown, in vitro , to be essential for Mycobacterium tuberculosis growth. It is conserved between mycobacterium species, is up-regulated during dormancy, has a known 3D crystal structure and has no known human homologs. A model of Rv2421c in complex with nicotinic acid adenine dinucleotide and magnesium ion was constructed and subject to virtual ligand screening against the Prestwick Chemical Library and the ZINC database, which yielded 155 potential hit molecules. 3D-QSAR studies of the 155 drug molecules indicated five compounds with similar inhibitory efficiencies compared to known inhibitors of Rv2421c. Molecular docking validation and molecular dynamics simulation analysis of the top five compounds indicated that the identified inhibitor molecules bind to Rv2421c with comparable efficiency as the substrate DND. Subsequent in vitro testing of the five compounds identified Novobiocin sodium salt with activity against Mycobacterium tuberculosis at 50 μM, 25μM and weakly at 10μM concentrations. Although, Novobiocin salt targets Mycobacterium tuberculosis DNA gyrase B our studies suggest that it has the potential to be repurposed to inhibit Rv2421c. Subsequent in silico structural analysis of known Novobiocin sodium salt derivatives against Rv2421c suggest promising alternatives for the treatment of Mycobacterium tuberculosis .


Author(s):  
Fostino R. B. Bokosi ◽  
Richard M. Beteck ◽  
Audrey Jordaan ◽  
Ronnet Seldon ◽  
Digby F. Warner ◽  
...  

2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Stanislav Huszár ◽  
Vinayak Singh ◽  
Alica Polčicová ◽  
Peter Baráth ◽  
María Belén Barrio ◽  
...  

ABSTRACT The mycobacterial phosphoglycosyltransferase WecA, which initiates arabinogalactan biosynthesis in Mycobacterium tuberculosis, has been proposed as a target of the caprazamycin derivative CPZEN-45, a preclinical drug candidate for the treatment of tuberculosis. In this report, we describe the functional characterization of mycobacterial WecA and confirm the essentiality of its encoding gene in M. tuberculosis by demonstrating that the transcriptional silencing of wecA is bactericidal in vitro and in macrophages. Silencing wecA also conferred hypersensitivity of M. tuberculosis to the drug tunicamycin, confirming its target selectivity for WecA in whole cells. Simple radiometric assays performed with mycobacterial membranes and commercially available substrates allowed chemical validation of other putative WecA inhibitors and resolved their selectivity toward WecA versus another attractive cell wall target, translocase I, which catalyzes the first membrane step in the biosynthesis of peptidoglycan. These assays and the mutant strain described herein will be useful for identifying potential antitubercular leads by screening chemical libraries for novel WecA inhibitors.


2013 ◽  
Vol 37 (8) ◽  
pp. 1001-1015 ◽  
Author(s):  
Anand Balupuri ◽  
Changdev G. Gadhe ◽  
Pavithra K. Balasubramanian ◽  
Gugan Kothandan ◽  
Seung Joo Cho

2017 ◽  
Vol Volume11 ◽  
pp. 563-574 ◽  
Author(s):  
Junie Billones ◽  
Maria Constancia Carrillo ◽  
Voltaire Organo ◽  
Jamie Bernadette Sy ◽  
Nina Abigail Clavio ◽  
...  

2020 ◽  
Author(s):  
Tamara Rubilar ◽  
Elena Susana Barbieri ◽  
Ayelén Gázquez ◽  
Marisa Avaro ◽  
Mercedes Vera-Piombo ◽  
...  

The SARS-CoV-2 outbreak has spread rapidly and globally generating a new coronavirus disease (COVID-19) since December 2019 that turned into a pandemic. Effective drugs are urgently needed and drug repurposing strategies offer a promising alternative to dramatically shorten the process of traditional de novo development. Based on their antiviral uses, the potential affinity of sea urchin pigments to bind main protease (Mpro) of SARS-CoV-2 was evaluated in silico. Docking analysis was used to test the potential of these sea urchin pigments as therapeutic and antiviral agents. All pigment compounds presented high molecular affinity to Mpro protein. However, the 1,4-naphtoquinones polihydroxilate (Spinochrome A and Echinochrome A) showed high affinity to bind around the Mpro´s pocket target by interfering with proper folding of the protein mainly through an H-bond with Glu166 residue. This interaction represents a potential blockage of this protease´s activity. All these results provide novel information regarding the uses of sea urchin pigments as antiviral drugs and suggest the need for further in vitro and in vivo analysis to expand all therapeutic uses against SARS-CoV-2. <br>


2020 ◽  
Author(s):  
Florian Kaiser ◽  
Maximilian G. Plach ◽  
Thomas Schubert ◽  
V. Joachim Haupt

Accelerated development of lead structures is of high interest to the pharmaceutical industry in order to decrease development times and costs. We showcase how an intelligent combination of AI-based drug screening with state-of-the-art biophysics drives the rapid identification of novel inhibitor structures with high chemical diversity for cGMP-dependent 3’,5’-cyclic phosphodiesterase (PDE2). The starting point was an off-the-shelve chemical library of two million drug-like compounds. In a single in silico reduction step, we short-listed 125 compounds – the focused library – as potential binders to PDE2 and tested their binding behavior in vitro using MicroScale Thermophoresis (MST). Of this focused library, seven compounds indicated binding to PDE2, translating to a hit rate of 6%. Three of these compounds have affinities in the lower micromolar range. The compound with the highest affinity showed a KD of 10 µM and is thus an excellent starting point for further medicinal chemistry optimization. The results show how innovative and structure-driven in silico approaches and biophysics can be used to accelerate drug discovery and to obtain new molecular scaffolds at a fraction of the costs and time – compared with standard high-throughput screening.


Sign in / Sign up

Export Citation Format

Share Document