scholarly journals Response of Rhodococcus cerastii IEGM 1278 to toxic effects of ibuprofen

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260032
Author(s):  
Irina B. Ivshina ◽  
Elena A. Tyumina ◽  
Grigory A. Bazhutin ◽  
Elena V. Vikhareva

The article expands our knowledge on the variety of biodegraders of ibuprofen, one of the most frequently detected non-steroidal anti-inflammatory drugs in the environment. We studied the dynamics of ibuprofen decomposition and its relationship with the physiological status of bacteria and with additional carbon and energy sources. The involvement of cytoplasmic enzymes in ibuprofen biodegradation was confirmed. Within the tested actinobacteria, Rhodococcus cerastii IEGM 1278 was capable of complete oxidation of 100 μg/L and 100 mg/L of ibuprofen in 30 h and 144 h, respectively, in the presence of an alternative carbon source (n-hexadecane). Besides, the presence of ibuprofen induced a transition of rhodococci from single- to multicellular lifeforms, a shift to more negative zeta potential values, and a decrease in the membrane permeability. The initial steps of ibuprofen biotransformation by R. cerastii IEGM 1278 involved the formation of hydroxylated and decarboxylated derivatives with higher phytotoxicity than the parent compound (ibuprofen). The data obtained indicate potential threats of this pharmaceutical pollutant and its metabolites to biota and natural ecosystems.

2019 ◽  
Vol 16 ◽  
pp. 1692-1701
Author(s):  
Ponnaiah Paulraj ◽  
Harvie Anak Shukri ◽  
Vnootheni Nagiah ◽  
Nagaraja Suryadevara ◽  
Balavinayagamani Ganapathy

2013 ◽  
Vol 690-693 ◽  
pp. 1431-1434
Author(s):  
Xin Ru Zhang ◽  
Ze Yi Jiang ◽  
Hao Yuan ◽  
Yuan Xiang Lu ◽  
Liang Chen ◽  
...  

Microalgae, in wet conditions, tend to grow on surfaces and form biofilms. The adhesion of microalgae to surfaces is very important for algal mass culture. The formation and development of microalgal biofims are in large denpend on the properties of cell surface, substratum surface and gowth medium. In this paper, the influence of substratum surface zeta potential on the microalgal biofilms was particularly investigated. We focused on a widely-used microalgal strain, the freshwater autotrophicChlorella sp..The adhesion phenomena ofChlorella sp.to surfaces with different zeta potential were observed microscopically. It was found thatChlorella sp.adhered easily to the surface with a positive zeta potential and difficultly to the surface with a negative zeta potential. We concluded that the surface zeta potential had a greater influence on the adhesion of microalgal cells to substratum surfaces. Our findings have important implications for microalgae mass culture and harvesting.


2018 ◽  
Vol 22 (2) ◽  
pp. 373-384 ◽  
Author(s):  
Kaustuvmani Patowary ◽  
Moonjit Das ◽  
Rupshikha Patowary ◽  
Mohan Chandra Kalita ◽  
Suresh Deka

Weed Science ◽  
1990 ◽  
Vol 38 (4-5) ◽  
pp. 416-420 ◽  
Author(s):  
Hone L. Sun ◽  
Thomas J. Sheets ◽  
Frederick T. Corbin

A mixed microbial culture able to transform alachlor at a concentration of 50 μg ml-1was obtained from alachlor-treated soil after an enrichment period of 84 days. The microbial community was composed of seven strains of bacteria. No single isolate was able to utilize alachlor as a sole source of carbon. There was no alachlor left in the enriched culture after a 14-day incubation, but only 12% of the14C-ring-labeled alachlor was converted to14CO2through ring cleavage during 14 days in the basal medium amended with alachlor as a sole carbon source. The presence of sucrose as an alternative carbon source decreased the mineralization potential of the enriched culture, but sucrose increased the mineralizing ability of a three-member mixed culture. Thin-layer chromatographic analysis showed that there were four unidentified metabolites of alachlor produced by the enriched culture. Sucrose decreased the amount of two of the four metabolites. The absence of a noticeable decline in radioactivity beyond the initial 12% suggested that the side chain of alachlor was utilized as carbon source by the enriched culture. Little difference in radioactivity between growth medium and cell-free supernatant of the growth medium suggested that the carbon in the ring was not incorporated into the cells of the degrading microorganisms.


2015 ◽  
Vol 19 (1) ◽  
pp. 56
Author(s):  
Sebastian Margino ◽  
Erni Martani ◽  
Andriessa Prameswara

Poly-β-hydroxybutyrate (PHB) production from amylolytic Micrococcus sp. PG1. Poly-β-hydroxybutyrate(PHB) is an organic polymer, which synthesized by many bacteria and serves as internal energy. PHB ispotential as future bioplastic but its price is very expensive due to glucose usage in PHB industry. Thedevelopment of PHB production using starch as an alternative carbon source has been conducted to reducethe dependence of glucose in PHB production. In this study, amylolytic bacteria from arrowroot processingsite were screened quantitavely based on amylase specifi c activity and PHB producing ability. The result of thestudy showed that among of 24 amylolytic isolates, 12 isolates of them were able to accumulate PHB rangedfrom 0,68-11,65% (g PHB/g cdw). The highest PHB production from substrate arrowroot starch was PG1 andafter optimization resulted in increasing of PHB production up to 16,8% (g PHB/g cdw) 40 hours incubationtime. Based on morphological, biochemical and physiological characters, the PG1 isolate was identifi ed asMicrococcus sp. PG1. Result of the FTIR analysis of produced polymer by Micrococcus sp. PG1 was indicatedas poly-β- hydroxybutyrate (PHB)


Bone ◽  
2009 ◽  
Vol 44 ◽  
pp. S259 ◽  
Author(s):  
J.P. Dillon ◽  
P.J.M. Wilson ◽  
W.D. Fraser ◽  
B.K. Mwaura ◽  
M.J. Hayton ◽  
...  

1973 ◽  
Vol 51 (11) ◽  
pp. 779-784 ◽  
Author(s):  
M. A. Singer

The 22Na efflux from phosphatidylcholine liposomes was measured in the presence of different anions. Only salicylate significantly increases sodium permeability. Although this anion adsorbs onto the liposomal surface creating a negative zeta potential, evidence is presented that this is not the sole mechanism underlying the enhanced cation permeability. It is proposed that salicylate also alters the dipole potential at the membrane–solution interface.


Sign in / Sign up

Export Citation Format

Share Document