phb production
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 76)

H-INDEX

29
(FIVE YEARS 5)

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 294
Author(s):  
Fangting Wu ◽  
Ying Zhou ◽  
Wenyu Pei ◽  
Yuhan Jiang ◽  
Xiaohui Yan ◽  
...  

Poly-(3-hydroxybutyrate) (PHB) is a polyester with biodegradable and biocompatible characteristics and has many potential applications. To reduce the raw material costs and microbial energy consumption during PHB production, cheaper carbon sources such as sucrose were evaluated for the synthesis of PHB under anaerobic conditions. In this study, metabolic network analysis was conducted to construct an optimized pathway for PHB production using sucrose as the sole carbon source and to guide the gene knockout to reduce the generation of mixed acid byproducts. The plasmid pMCS-sacC was constructed to utilize sucrose as a sole carbon source, and the cascaded promoter P3nirB was used to enhance PHB synthesis under anaerobic conditions. The mixed acid fermentation pathway was knocked out in Escherichia coli S17-1 to reduce the synthesis of byproducts. As a result, PHB yield was improved to 80% in 6.21 g/L cell dry weight by the resulted recombinant Escherichia coli in a 5 L bed fermentation, using sucrose as the sole carbon source under anaerobic conditions. As a result, the production costs of PHB will be significantly reduced.


Author(s):  
Hong-Ju Lee ◽  
Su-Gyeong Kim ◽  
Do-Hyun Cho ◽  
Shashi Kant Bhatia ◽  
Ranjit Gurav ◽  
...  
Keyword(s):  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Daiana V. Trapé ◽  
Olivia V. López ◽  
Marcelo A. Villar

AbstractThis work aimed to study the feasibility of using vinasse for polyhydroxybutyrate (PHB) production by Bacillus megaterium. To optimize the culture medium, a Box–Behnken design was employed considering carbon (C), nitrogen (N), and phosphorus (Ph) concentrations as independent variables and PHB productivity as the response variable. The productivity decreased when C or N were increased, probably due to the presence of phenolic compounds and the limitation of N for the production of PHB by Bacillus sp. bacteria. An additional experimental design to optimize the C/N ratio and growing conditions (fermentation time and temperature) was carried out. Fermentation time had a statistically significant effect on PHB productivity reaching 10.6 mg/L h. On the other hand, the variability in physicochemical properties of vinasse samples led to significant differences in PHB productivity. Lower productivity values were obtained when vinasse had higher values of DBO. Therefore, biopolymers production from vinasse is a feasible alternative to valorize this bioethanol by-product. Graphical Abstract


2021 ◽  
Vol 9 (11) ◽  
pp. 2395
Author(s):  
Amal W. Danial ◽  
Shereen M. Hamdy ◽  
Sulaiman A. Alrumman ◽  
Sanaa M. F. Gad Gad El-Rab ◽  
Ahmed A.M. Shoreit ◽  
...  

Polyhydroxybutyrates (PHBs) are macromolecules synthesized by bacteria. Because of their fast degradability under natural environmental conditions, PHBs were selected as alternatives for the production of biodegradable plastics. Sixteen PHB-accumulating strains were selected and compared for their ability to accumulate PHB granules inside their cells. Isolate AS-02 was isolated from cattle manure and identified as Bacillus wiedmannii AS-02 OK576278 by means of 16S rRNA analysis. It was found to be the best producer. The optimum pH, temperature, and incubation period for the best PHB production by the isolate were 7, 35 °C, and 72 h respectively. PHB production was the best with peptone and glucose as nitrogen and carbon sources at a C/N ratio of (2:1). The strain was able to accumulate 423, 390, 249, 158, and 144 mg/L PHB when pretreated orange, mango, banana, onion peels, and rice straw were used as carbon sources, respectively. The extracted polymer was characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), and GC-MS spectroscopy, which confirmed the structure of the polymer as PHB. The isolate B. wiedmannii AS-02 OK576278 can be considered an excellent candidate for industrial production of PHB from agricultural wastes.


Author(s):  
Ruohao Tang ◽  
Xiaowei Peng ◽  
Caihong Weng ◽  
Yejun Han

Cupriavidus necator H16 is an ideal strain for polyhydroxybutyrate (PHB) production from CO 2 . Low-oxygen-stress can induce PHB synthesis in C. necator H16 while reducing bacterial growth under chemoautotrophic culture. The optimum growth and PHB synthesis of C. necator H16 cannot be achieved simultaneously, which restricts PHB production. The present study was initiated to address the issue through comparative transcriptome and gene function analysis. Firstly, the comparative transcriptome of C. necator H16 chemoautotrophically cultured under low-oxygen-stress and non-stress conditions was studied. Three types of transcription different genes were discovered: PHB enzymatic synthesis, PHB granulation, and regulators. Under low-oxygen-stress condition, acetoacetyl-CoA reductase gene phaB2 , PHB synthase gene phaC2 , phasins genes phaP1 and phaP2 , regulators genes uspA and rpoN were up-regulated 3.0, 2.5, 1.8, 2.7, 3.5, 1.6 folds, respectively. Secondly, the functions of up-regulated genes and their applications in PHB synthesis were further studied. It was found that the over-expression of phaP1 , phaP2 , uspA , and rpoN can induce PHB synthesis under non-stress condition, while phaB2 and phaC2 have no significant effect. Under the optimum condition, PHB percentage content in C. necator H16 was respectively increased by 37.2%, 28.4%, 15.8%, and 41.0% with the over-expression of phaP1 , phaP2 , uspA , and rpoN , and the corresponding PHB production increased by 49.8%, 42.9%, 47.0%, and 77.5% under non-stress chemoautotrophic conditions. Similar promotion by phaP1 , phaP2 , uspA , and rpoN was observed in heterotrophically cultured C. necator H16. The PHB percentage content and PHB production were respectively increased by 54.4% and 103.1% with the over-expression of rpoN under non-stress heterotrophic conditions. Importance Microbial fixation of CO 2 is an effective way to reduce greenhouse gases. Some microbes such as C. necator H16 usually accumulate PHB when they grow under stress. Low-oxygen-stress can induce PHB synthesis when C. necator H16 is autotrophically cultured with CO 2 , H 2 , and O 2 , while under stress, growth is restricted and total PHB yield is reduced. Achieving the optimal bacterial growth and PHB synthesis at the same time is an ideal condition for transforming CO 2 into PHB by C. necator H16. The present study was initiated to clarify the molecular basis of low-oxygen-stress promoting PHB accumulation and to realize the optimal PHB production by C. necator H16. Genes up-regulated under non-stress conditions were identified through comparative transcriptome analysis and over-expression of phasin and regulator genes were demonstrated to promote PHB synthesis in C. necator H16.


Author(s):  
Pranav P. Kulkarni ◽  
Sambhaji B. Chavan ◽  
Mandar S. Deshpande ◽  
Dhanishta Sagotra ◽  
Pramod S. Kumbhar ◽  
...  

2021 ◽  
Vol 89 (2) ◽  
Author(s):  
Diah - RATNANINGRUM ◽  
Een Sri ENDAH ◽  
Puspita LISDIYANTI ◽  
Sri PRIATNI ◽  
Vienna SARASWATY

Burkholderia sp. has been reported as a poly-hydroxy-butyrate (PHB) producer. PHB is a natural polyester class with a wide range of applications in foods, medicines, and biomedicines. However, the high production cost of PHB may limit its potential. Molasses, a by-product of the sugarcane industry available abundantly, may be used as an alternative carbon source of PHB production. In this research, we aimed to evaluate PHB production by Burkholderia sp. B73 in fermentation media using molasses as an alternative carbon source. Small-scale experiments were performed in Erlenmeyer flasks on a shaker at 150 rpm and 30 °C to evaluate the best initial C/N ratio for biomass accumulation and PHB production. A set of parameters including bacterial growth, dry cell weight, yield, and FTIR spectrum of PHB were observed.  The results showed that molasses could be used to grow Burkholderia sp. B73 and the highest PHB production was obtained when a 20:1 C/N ratio of molasses was applied in the fermentation medium. In addition, when the initial pH was adjusted to 7.0, the highest PHB yield was also produced. More importantly, the use of molasses as a carbon source improved the PHB yield by nearly 2-fold compared with our previous report using a synthetic Ramsay’s minimal medium. In conclusion, the experiment results showed that molasses could be used as a low-cost carbon source for PHB production by Burkholderia sp. B73 bacteria.


2021 ◽  
Author(s):  
Manuella Silverio ◽  
Rosane Piccoli ◽  
João Reis ◽  
José Gregorio Gomez ◽  
Antonio Baptista

Abstract The Brazilian ethanol industry is one of the most important in the global market, however these important industrial activities have been generating significant amounts of vinasse and its management has become costly for distilleries. In this study, the aim was to evaluate concentrated and in natura vinasse as basal culture media for biotechnological processes. Different bacteria and processes were assessed: L-threonine production by E. coli THR14, with glucose as carbon source; PHB production by halophilic strain Halomonas sp. HG03, with sucrose as carbon source; and PHB biosynthesis by R. eutropha L359PCJ, which used glycerol from vinasse as carbon source. Strains were evaluated firstly in shake flasks cultivations using vinasse-based media. E. coli THR14 had no statistical difference for biomass and L-threonine concentrations among control and vinasse-based treatments (up to 50% v v-1 of in natura vinasse). Halomonas sp. HG03 and R. eutropha L359PCJ were cultivated in mineral media diluted by in natura (50% and 75% v v-1) and concentrated (50% and 75% v v-1) vinasses. Higher vinasse concentrations resulted in higher cellular growth rather than PHB accumulation for both bacteria. In vinasse-based treatments, Halomonas sp. HG03 had PHB content between 19.6 – 75.2% and R. eutropha L359PCJ, 48.4 – 68.5%. 50% (v v-1) of concentrated vinasse was the most attractive condition for PHB production by both bacteria. Further experiments in CSTR bioreactors used this nutritional condition and R. eutropha L359PCJ had PHB content of 66.3%, concentrations of residual cell dry weight (rCDW) = 9.4 g L-1 and PHB = 18.6 g L-1, with YX/S = 0.16 g gGLYCEROL-1, YP/S = 0.32 g gGLYCEROL-1 and 0.25 gPHB Lh-1. Halomonas sp. HG03 had PHB content of 45.7%, rCDW = 9.8 g L-1, PHB = 8.3 g L-1 and YX/S = 0.18 g gSUCROSE-1, YP/S = 0.16 g gSUCROSE-1 and 0.12 gPHB Lh-1. Finally, cost reductions of PHB production by R. eutropha L359PCJ with concentrated vinasse-based medium were evaluated in silico by using SuperPro Designer. As a partial source of glycerol and other nutrients for PHB production by R. eutropha L359PCJ, vinasse reduced overall production costs by 13%. Simulated processes that used concentrated vinasse-based media combined with improvements of PHB productivity and higher cellular densities had production costs between US$ 3.9 – 7.5/kgPHB and 2.6 – 7.3 years of payback time.


2021 ◽  
Vol 8 (10) ◽  
pp. 105404
Author(s):  
Nashwa Hagagy ◽  
Amna A N Saddiq ◽  
Hend M Tag ◽  
Hamada Abdelgawad ◽  
Samy Selim

Abstract As good models for developing techniques, Haloarchaea are using as cell factories to produce a considerable concentration of bioplastics, polyhydroxyalkanoate (PHA), polyhydroxybutyrate (PHB), and polyhydroxyvalerate (PHV). In this study, low-cost carbon sources by Sudan Black staining was applied for screening haloarchaea a hypersaline environment (southern coast of Jeddah, Saudi Arabia). The growth of the selected isolate and PHB-production under different carbon sources, temperature, pH values and NaCl concentrations were investigated. The biopolymer was extracted and quantitatively measured. The biopolymer was qualitatively identified by Fourier-transform infra-red analysis (FTIR) and High Performance Liquid Chromatography (HPLC). The potential Haloarcula sp strain NRS20 (MZ520352) could significantly accumulate PHB under nutrient-limiting conditions using different carbon sources including starch, carboxymethyl cellulose (CMC), sucrose, glucose and glycerol with 23.83%, 14%, 11%, 12% and 8% of PHB/CDW respectively under 25% NaCl (w/v), pH 7, at 37 °C. The results of FTIR pattern indicated that the significant peak at 1709.22 cm−1 confirmed the presence of the ester carbonyl-group (C=O) which is typical of PHB. HPLC analysis indicated that produced PHB was detected at 7.5 min with intensity exceeding the standard PHB at 8.0 min. Few potential species of haloarchaea were reported for economical PHB-production, here, Haloarcula sp strain NRS20 showed high content of PHB, exhibited a promising PHB-producer using inexpensive sources of carbon.


Sign in / Sign up

Export Citation Format

Share Document