scholarly journals A broad-spectrum cloning vector that exists as both an integrated element and a free plasmid in Chlamydia trachomatis

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261088
Author(s):  
Lotisha Garvin ◽  
Rebecca Vande Voorde ◽  
Mary Dickinson ◽  
Steven Carrell ◽  
Kevin Hybiske ◽  
...  

Plasmid transformation of chlamydiae has created new opportunities to investigate host–microbe interactions during chlamydial infections; however, there are still limitations. Plasmid transformation requires a replicon derived from the native Chlamydia plasmid, and these transformations are species-specific. We explored the utility of a broad host-range plasmid, pBBR1MCS-4, to transform chlamydiae, with a goal of simplifying the transformation process. The plasmid was modified to contain chromosomal DNA from C. trachomatis to facilitate homologous recombination. Sequences flanking incA were cloned into the pBBR1MCS-4 vector along with the GFP:CAT cassette from the pSW2-GFP chlamydial shuttle vector. The final plasmid construct, pBVR2, was successfully transformed into C. trachomatis strain L2-434. Chlamydial transformants were analyzed by immunofluorescence microscopy and positive clones were sequentially purified using limiting dilution. PCR and PacBio-based whole genome sequencing were used to determine if the plasmid was maintained within the chromosome or as an episome. PacBio sequencing of the cloned transformants revealed allelic exchange events between the chromosome and plasmid pBVR2 that replaced chromosomal incA with the plasmid GFP:CAT cassette. The data also showed evidence of full integration of the plasmid into the bacterial chromosome. While some plasmids were fully integrated, some were maintained as episomes and could be purified and retransformed into E. coli. Thus, the plasmid can be successfully transformed into chlamydia without a chlamydial origin of replication and can exist in multiple states within a transformed population.

2008 ◽  
Vol 191 (5) ◽  
pp. 1574-1580 ◽  
Author(s):  
Richard Meyer

ABSTRACT The mobilization proteins of the broad-host-range plasmid R1162 can initiate conjugative transfer of a plasmid from a 19-bp locus that is partially degenerate in sequence. Such loci are likely to appear by chance in the bacterial chromosome and could act as cryptic sites for transfer of chromosomal DNA when R1162 is present. The R1162-dependent transfer of chromosomal DNA, initiated from one such potential site in Pectobacterium atrosepticum, is shown here. A second active site was identified in Escherichia coli, where it is also shown that large amounts of DNA are transferred. This transfer probably reflects the combined activity of the multiple cryptic origins in the chromosome. Transfer of chromosomal DNA due to the presence of a plasmid in the cytoplasm describes a previously unrecognized potential for the exchange of bacterial DNA.


2002 ◽  
Vol 184 (3) ◽  
pp. 728-738 ◽  
Author(s):  
Gayatri Vedantam ◽  
David W. Hecht

ABSTRACT We report the isolation and preliminary characterization of BTF-37, a new 52-kb transfer factor isolated from Bacteroides fragilis clinical isolate LV23. BTF-37 was obtained by the capture of new DNA in the nonmobilizable Bacteroides-Escherichia coli shuttle vector pGAT400ΔBglII using a functional assay. BTF-37 is self-transferable within and from Bacteroides and also self-transfers in E. coli. Partial DNA sequencing, colony hybridization, and PCR revealed the presence of Tet element-specific sequences in BTF-37. In addition, Tn5520, a small mobilizable transposon that we described previously (G. Vedantam, T. J. Novicki, and D. W. Hecht, J. Bacteriol. 181:2564–2571, 1999), was also coisolated within BTF-37. Scanning and transmission electron microscopy of Tet element-containing Bacteroides spp. and BTF-37-harboring Bacteroides and E. coli strains revealed the presence of pilus-like cell surface structures. These structures were visualized in Bacteroides spp. only when BTF-37 and Tet element strains were induced with subinhibitory concentrations of tetracycline and resembled those encoded by E. coli broad-host-range plasmids. We conclude that we have captured a new, self-transferable transfer factor from B. fragilis LV23 and that this new factor encodes a tetracycline-inducible Bacteroides sp. conjugation apparatus.


1985 ◽  
pp. 173-188 ◽  
Author(s):  
Richard J. Meyer ◽  
Lung-Shen Lin ◽  
Kyunghoon Kim ◽  
Michael A. Brasch

Author(s):  
Onuchina N.V., Soybanov V.D.

The causative agent of anthrax - Bacillus anthracis, due to the prevalence of its natural foci in Russia, high virulence for humans and most mammals, the unique resistance of spore forms to environmental factors and repeated use in terrorist acts, is an extremely dangerous biological agent. Therefore, the search for new effective drugs for the diagnosis and treatment of anthrax, including diseases caused by antibiotic-resistant strains of B. anthracis is necessary. The use of lytic enzymes of species-specific bacteriophages is a new trend in the diagnosis, prevention and treatment of infectious diseases. The goal of this work is the cloning of the anthrax bacteriolysin PlyPH gene as part of the pTrcHis2C vector in Escherichia coli and the in vitro study of the lytic properties of the protein encoded by it against B. anthracis microbial cells. According to the complete sequencing of the B. anthracis genomes of the Ames, Stern 34F2 and JB17 strains, a prophage was found in their chromosomal DNA, which lost part of the structural genes necessary for its replication, but retained a gene with a high degree of homology with the bacteriolysin γ phage gene. For amplification and subsequent cloning of the PlyPH gene, we developed primers containing EcoRI and BamHI restriction enzyme recognition sites. Amplification of the PlyPH gene in a polymerase chain reaction (PCR) with a developed pair of primers was performed using the Stern 34F2 strain of the anthrax microbe as a template. Based on the obtained amplification products and the pTrcHis2C vector, we constructed a recombinant plasmid containing the bacteriolysin synthesis PlyPH gene and stably functioning in the cells of the recombinant E. coli strain. In the course of research, it has been established that microbial cells of the E. coli recombinant TOP10 strain provide for the production of the bacteriolysin of the anthrax prophage, PlyPH , which has the ability to in vitro lyse the vegetative cells of the STI-1 vaccine strain of B. anthracis


Genetics ◽  
1992 ◽  
Vol 130 (1) ◽  
pp. 27-36 ◽  
Author(s):  
A Greener ◽  
S M Lehman ◽  
D R Helinski

Abstract A broad host range cloning vector was constructed, suitable for monitoring promoter activity in diverse Gram-negative bacteria. This vector, derived from plasmid RSF1010, utilized the firefly luciferase gene as the reporter, since the assay for its bioluminescent product is sensitive, and measurements can be made without background from the host. Twelve DNA fragments with promoter activity were obtained from broad host range plasmid RK2 and inserted into the RSF1010 derived vector. The relative luciferase activities were determined for these fragments in five species of Gram-negative bacteria. In addition, four promoters were analyzed by primer extension to locate transcriptional start sites in each host. The results show that several of the promoters vary substantially in relative strengths or utilize different transcriptional start sites in different bacteria. Other promoters exhibited similar activities and identical start sites in the five hosts examined.


Sign in / Sign up

Export Citation Format

Share Document