scholarly journals Crystal Structure of the Vaccinia Virus DNA Polymerase Holoenzyme Subunit D4 in Complex with the A20 N-Terminal Domain

2014 ◽  
Vol 10 (3) ◽  
pp. e1003978 ◽  
Author(s):  
Céline Contesto-Richefeu ◽  
Nicolas Tarbouriech ◽  
Xavier Brazzolotto ◽  
Stéphane Betzi ◽  
Xavier Morelli ◽  
...  
2021 ◽  
Author(s):  
Keisuke Oki ◽  
Mariko Nagata ◽  
Takeshi Yamagami ◽  
Tomoyuki Numata ◽  
Sonoko Ishino ◽  
...  

Abstract Genomic DNA replication requires replisome assembly. We show here the molecular mechanism by which CMG (GAN–MCM–GINS)-like helicase cooperates with the family D DNA polymerase (PolD) in Thermococcus kodakarensis. The archaeal GINS contains two Gins51 subunits, the C-terminal domain of which (Gins51C) interacts with GAN. We discovered that Gins51C also interacts with the N-terminal domain of PolD’s DP1 subunit (DP1N) to connect two PolDs in GINS. The two replicases in the replisome should be responsible for leading- and lagging-strand synthesis, respectively. Crystal structure analysis of the DP1N–Gins51C–GAN ternary complex was provided to understand the structural basis of the connection between the helicase and DNA polymerase. Site-directed mutagenesis analysis supported the interaction mode obtained from the crystal structure. Furthermore, the assembly of helicase and replicase identified in this study is also conserved in Eukarya. PolD enhances the parental strand unwinding via stimulation of ATPase activity of the CMG-complex. This is the first evidence of the functional connection between replicase and helicase in Archaea. These results suggest that the direct interaction of PolD with CMG-helicase is critical for synchronizing strand unwinding and nascent strand synthesis and possibly provide a functional machinery for the effective progression of the replication fork.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nhung Thi Trang Trinh ◽  
Hieu Quang Tran ◽  
Quyen Van Dong ◽  
Christian Cambillau ◽  
Alain Roussel ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Author(s):  
Qing He ◽  
Kang Wang ◽  
Tiantian Su ◽  
Feng Wang ◽  
Lichuan Gu ◽  
...  

VqsR is a quorum-sensing (QS) transcriptional regulator which controls QS systems (las,rhlandpqs) by directly downregulating the expression ofqscRinPseudomonas aeruginosa. As a member of the LuxR family of proteins, VqsR shares the common motif of a helix–turn–helix (HTH)-type DNA-binding domain at the C-terminus, while the function of its N-terminal domain remains obscure. Here, the crystal structure of the N-terminal domain of VqsR (VqsR-N; residues 1–193) was determined at a resolution of 2.1 Å. The structure is folded into a regular α–β–α sandwich topology, which is similar to the ligand-binding domain (LBD) of the LuxR-type QS receptors. Although their sequence similarity is very low, structural comparison reveals that VqsR-N has a conserved enclosed cavity which could recognize acyl-homoserine lactones (AHLs) as in other LuxR-type AHL receptors. The structure suggests that VqsR could be a potential AHL receptor.


Sign in / Sign up

Export Citation Format

Share Document