scholarly journals Diagnostic Accuracy of Noninvasive Genotyping of EGFR in Lung Cancer Patients by Deep Sequencing of Plasma Cell-Free DNA

2015 ◽  
Vol 61 (9) ◽  
pp. 1191-1196 ◽  
Author(s):  
Junji Uchida ◽  
Kikuya Kato ◽  
Yoji Kukita ◽  
Toru Kumagai ◽  
Kazumi Nishino ◽  
...  

Abstract BACKGROUND Genotyping of EGFR (epidermal growth factor receptor) mutations is indispensable for making therapeutic decisions regarding whether to use EGFR tyrosine kinase inhibitors (TKIs) for lung cancer. Because some cases might pose challenges for biopsy, noninvasive genotyping of EGFR in circulating tumor DNA (ctDNA) would be beneficial for lung cancer treatment. METHODS We developed a detection system for EGFR mutations in ctDNA by use of deep sequencing of plasma DNA. Mutations were searched in >100 000 reads obtained from each exon region. Parameters corresponding to the limit of detection and limit of quantification were used as the thresholds for mutation detection. We conducted a multi-institute prospective study to evaluate the detection system, enrolling 288 non–small cell lung cancer (NSCLC) patients. RESULTS In evaluating the performance of the detection system, we used the genotyping results from biopsy samples as a comparator: diagnostic sensitivity for exon 19 deletions, 50.9% (95% CI 37.9%–63.9%); diagnostic specificity for exon 19 deletions, 98.0% (88.5%–100%); sensitivity for the L858R mutation, 51.9% (38.7%–64.9%); and specificity for L858R, 94.1% (83.5%–98.6%). The overall sensitivities were as follows: all cases, 54.4% (44.8%–63.7%); stages IA–IIIA, 22.2% (11.5%–38.3%); and stages IIIB–IV, 72.7% (60.9%–82.1%). CONCLUSIONS Deep sequencing of plasma DNA can be used for genotyping of EGFR in lung cancer patients. In particular, the high specificity of the system may enable a direct recommendation for EGFR-TKI on the basis of positive results with plasma DNA. Because sensitivity was low in early-stage NSCLC, the detection system is preferred for stage IIIB–IV NSCLC.




2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e20565-e20565 ◽  
Author(s):  
Ruben Salanova ◽  
Julio C Calderazzo Pereyra ◽  
Laura Leguina ◽  
Asuncion Bena ◽  
Mariana Barberis ◽  
...  

e20565 Background: Until now, the results of the correlation between PD-L1, ALK expression and EGFR mutations remain controversial. We prospectively evaluated patterns among EGFR mutant, ALK positive and PD-L1 positive lung cancer patients. Methods: PD-L1 and ALK expression was evaluated in 342 adenocarcinomas (AD) of the lung using inmunohistochemestry (anti-PD-L1 22C3, anti-ALK D5F3), and EGFR mutations using real time PCR (therascreen EGFR RGQ PCR Kit version 2). PD-L1 was also evaluated in 36 squamous (SQ) cell carcinomas. Results: 181 of 342 patients with AD were positive for PD-L1. 108 were positive with a TPS value between 1 and 49, and 73 were positive with a TPS value higher than 50 (p = 0.002). 25 of 36 patients with SQ were positive for PD-L1. 17 were positive with a TPS value between 1 and 49, and 8 were positive with a TPS value higher than 50. 133 samples with AD PD-L1 positive and 97 PD-L1 negative were tested for EGFR and ALK, 33 and 14 respectively were positive for EGFR mutations (p = 0.15), with 45% for exon 19 deletions (p = 0.003), 5 and 0 respectively were positive for ALK translocations (p = 0.053). 210 of 342 patients were men and 132 were women, 117 and 64 were positive for PD-L1 expression respectively (p > 0.1). Conclusions: NSCLC with EGFR mutation showed a trend for higher frequency of positive PD-L1 expression and NSCLC harboring ALK rearrangement was significantly associated with PD-L1 expression. These findings might contribute to the understanding of the regulation of PD-L1 expression in lung cancer and its relation to ALK expression and EGFR mutation.



Diagnostics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 114 ◽  
Author(s):  
Jen-Hui Tsou ◽  
Qixin Leng ◽  
Feng Jiang

The detection of EGFR mutations in circulating cell-free DNA can enable personalized therapy for cancer. The current techniques for detecting circulating EGFR mutations are expensive and time-consuming with moderate sensitivity. Emerging CRISPR is revolutionizing medical diagnostics and showing a great promise for nucleic acid detection. This study aims to develop CRISPR-Cas12a as a simple test to sensitively detect circulating EGFR mutations in plasma. Serially diluted samples of DNA containing heterozygous EGFR mutations (L858R and T790M) in wild-type genomic DNA are concurrently tested for the mutations by a CRISPR-Cas12a system and droplet digital PCR (ddPCR). The CRISPR-Cas12a system can detect both L858R and T790M with a limit of detection of 0.005% in less than three hours. ddPCR detects the mutations with a limit of detection of 0.05% for more than five hours. Plasma samples of 28 lung cancer patients and 20 cancer-free individuals are tested for the EGFR mutations by CRISPR-Cas12a system and ddPCR. The CRISPR-Cas12a system could detect L858R in plasma of two lung cancer patients whose tissue biopsies are positive for L858R, and one plasma sample of three lung cancer patients whose tissue biopsies are positive for T790M. ddPCR detects L858R in the same two plasm samples, however, does not detect T790M in any of the plasma samples. This proof of principle study demonstrates that the CRISPR-Cas12a system could rapidly and sensitively detect circulating EGFR mutations, and thus, has potential prognostic or therapeutic implications.



Neoplasma ◽  
2011 ◽  
Vol 58 (1) ◽  
pp. 74-81 ◽  
Author(s):  
M. LI ◽  
Q. ZHANG ◽  
L. LIU ◽  
Z. LIU ◽  
Z. ZHOU ◽  
...  


2016 ◽  
Vol 80 ◽  
pp. 411-417 ◽  
Author(s):  
Xiong-Wei Xu ◽  
Xiu-Hua Weng ◽  
Chang-Lian Wang ◽  
Wei-Wei Lin ◽  
Ai-Lin Liu ◽  
...  


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252304
Author(s):  
Dirk Stefani ◽  
Balazs Hegedues ◽  
Stephane Collaud ◽  
Mohamed Zaatar ◽  
Till Ploenes ◽  
...  

Background Torque teno virus (TTV) is a ubiquitous non-pathogenic virus, which is suppressed in immunological healthy individuals but replicates in immune compromised patients. Thus, TTV load is a suitable biomarker for monitoring the immunosuppression also in lung transplant recipients. Since little is known about the changes of TTV load in lung cancer patients, we analyzed TTV plasma DNA levels in lung cancer patients and its perioperative changes after lung cancer surgery. Material and methods Patients with lung cancer and non-malignant nodules as control group were included prospectively. TTV DNA levels were measured by quantiative PCR using DNA isolated from patients plasma and correlated with routine circulating biomarkers and clinicopathological variables. Results 47 patients (early stage lung cancer n = 30, stage IV lung cancer n = 10, non-malignant nodules n = 7) were included. TTV DNA levels were not detected in seven patients (15%). There was no significant difference between the stage IV cases and the preoperative TTV plasma DNA levels in patients with early stage lung cancer or non-malignant nodules (p = 0.627). While gender, tumor stage and tumor histology showed no correlation with TTV load patients below 65 years of age had a significantly lower TTV load then older patients (p = 0.022). Regarding routine blood based biomarkers, LDH activity was significantly higher in patients with stage IV lung cancer (p = 0.043), however, TTV load showed no correlation with LDH activity, albumin, hemoglobin, CRP or WBC. Comparing the preoperative, postoperative and discharge day TTV load, no unequivocal pattern in the kinetics were. Conclusion Our study suggest that lung cancer has no stage dependent impact on TTV plasma DNA levels and confirms that elderly patients have a significantly higher TTV load. Furthermore, we found no uniform perioperative changes during early stage lung cancer resection on plasma TTV DNA levels.



2019 ◽  
Vol 20 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Roger Gejman ◽  
Sergio Gonzalez ◽  
Matias Munoz Medel ◽  
Bruno Nervi ◽  
Cesar Sanchez ◽  
...  


1996 ◽  
Vol 2 (9) ◽  
pp. 1033-1035 ◽  
Author(s):  
Xu Qi Chen ◽  
Maurice Stroun ◽  
Jean-Luc Magnenat ◽  
Laurent P. Nicod ◽  
Anne-Marie Kurt ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document