Planar Functionalized Surfaces for Direct Immunoaffinity Desorption/Ionization Mass Spectrometry

2016 ◽  
Vol 62 (1) ◽  
pp. 270-278 ◽  
Author(s):  
Petr Pompach ◽  
Jana Nováková ◽  
Daniel Kavan ◽  
Oldřich Benada ◽  
Viktor Růžička ◽  
...  

Abstract BACKGROUND Recent studies show that the haptoglobin phenotype in individuals with diabetes mellitus is an important factor for predicting the risk of myocardial infarction, cardiovascular death, and stroke. Current methods for haptoglobin phenotyping include PCR and gel electrophoresis. A need exists for a reliable method for high-throughput clinical applications. Mass spectrometry (MS) can in principle provide fast phenotyping because haptoglobin α 1 and α 2, which define the phenotype, have different molecular masses. Because of the complexity of the serum matrix, an efficient and fast enrichment technique is necessary for an MS-based assay. METHODS MALDI plates were functionalized by ambient ion landing of electrosprayed antihaptoglobin antibody. The array was deposited on standard indium tin oxide slides. Fast immunoaffinity enrichment was performed in situ on the plate, which was further analyzed by MALDI-TOF MS. The haptoglobin phenotype was determined from the spectra by embedded software script. RESULTS The MALDI mass spectra showed ion signals of haptoglobin α subunits at m/z 9192 and at m/z 15 945. A cohort of 116 sera was analyzed and the reliability of the method was confirmed by analyzing the identical samples by Western blot. One hundred percent overlap of results between the direct immunoaffinity desorption/ionization MS and Western Blot analysis was found. CONCLUSIONS MALDI plates modified by antihaptoglobin antibody using ambient ion landing achieve low nonspecific interactions and efficient MALDI ionization and are usable for quick haptoglobin phenotyping.

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 610
Author(s):  
Mariann Inga Van Meter ◽  
Salah M. Khan ◽  
Brynne V. Taulbee-Cotton ◽  
Nathan H. Dimmitt ◽  
Nathan D. Hubbard ◽  
...  

Agglomeration of active pharmaceutical ingredients (API) in tablets can lead to decreased bioavailability in some enabling formulations. In a previous study, we determined that crystalline APIs can be detected as agglomeration in tablets formulated with amorphous acetaminophen tablets. Multiple method advancements are presented to better resolve agglomeration caused by crystallinity in standard tablets. In this study, we also evaluate three “budget” over-the-counter headache medications (subsequently labeled as brands A, B, and C) for agglomeration of the three APIs in the formulation: Acetaminophen, aspirin, and caffeine. Electrospray laser desorption ionization mass spectrometry imaging (ELDI-MSI) was used to diagnose agglomeration in the tablets by creating molecular images and observing the spatial distributions of the APIs. Brand A had virtually no agglomeration or clustering of the active ingredients. Brand B had extensive clustering of aspirin and caffeine, but acetaminophen was observed in near equal abundance across the tablet. Brand C also had extensive clustering of aspirin and caffeine, and minor clustering of acetaminophen. These results show that agglomeration with active ingredients in over-the-counter tablets can be simultaneously detected using ELDI-MS imaging.


Author(s):  
Alef dos Santos ◽  
Edson Rodrigues-Filho ◽  
Manoel Gustavo Petrucelli Homem

Abstract Lipids are among the organic substances that can work as biosignatures, indicating life in an environment. We present an experimental investigation concerning analysis of lipids from a microbial source deposited on the Mars Global Simulant (MGS-1) regolith by geomatrix-assisted laser desorption/ionization-mass spectrometry (GALDI-MS). Our results indicate that lipids from intact microbial cells of a black yeast strain can be detected in these mimetic samples of Martian soil. These lipid molecules are predominantly associated with the occurrence of adducts in the GALDI-MS spectra. The results can be helpful in the planning of future planetary missions.


Sign in / Sign up

Export Citation Format

Share Document