Activation of Endothelial NADPH Oxidase as the Source of a Reactive Oxygen Species in Lung Ischemia

CHEST Journal ◽  
1999 ◽  
Vol 116 ◽  
pp. 25S-26S ◽  
Author(s):  
A.B. Fisher ◽  
A.B. Al-Mehdi ◽  
V. Muzykantov
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Shan Chen ◽  
Xian-Fang Meng ◽  
Chun Zhang

Proteinuria is an independent risk factor for end-stage renal disease (ESRD) (Shankland, 2006). Recent studies highlighted the mechanisms of podocyte injury and implications for potential treatment strategies in proteinuric kidney diseases (Zhang et al., 2012). Reactive oxygen species (ROS) are cellular signals which are closely associated with the development and progression of glomerular sclerosis. NADPH oxidase is a district enzymatic source of cellular ROS production and prominently expressed in podocytes (Zhang et al., 2010). In the last decade, it has become evident that NADPH oxidase-derived ROS overproduction is a key trigger of podocyte injury, such as renin-angiotensin-aldosterone system activation (Whaley-Connell et al., 2006), epithelial-to-mesenchymal transition (Zhang et al., 2011), and inflammatory priming (Abais et al., 2013). This review focuses on the mechanism of NADPH oxidase-mediated ROS in podocyte injury under different pathophysiological conditions. In addition, we also reviewed the therapeutic perspectives of NADPH oxidase in kidney diseases related to podocyte injury.


Planta ◽  
2014 ◽  
Vol 240 (5) ◽  
pp. 1023-1035 ◽  
Author(s):  
Jiangli Zhang ◽  
Changsheng Chen ◽  
Di Zhang ◽  
Houhua Li ◽  
Pengmin Li ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Sunil Joshi ◽  
Ammon B. Peck ◽  
Saeed R. Khan

A major role of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes is to catalyze the production of superoxides and other reactive oxygen species (ROS). These ROS, in turn, play a key role as messengers in cell signal transduction and cell cycling, but when they are produced in excess they can lead to oxidative stress (OS). Oxidative stress in the kidneys is now considered a major cause of renal injury and inflammation, giving rise to a variety of pathological disorders. In this review, we discuss the putative role of oxalate in producing oxidative stress via the production of reactive oxygen species by isoforms of NADPH oxidases expressed in different cellular locations of the kidneys. Most renal cells produce ROS, and recent data indicate a direct correlation between upregulated gene expressions of NADPH oxidase, ROS, and inflammation. Renal tissue expression of multiple NADPH oxidase isoforms most likely will impact the future use of different antioxidants and NADPH oxidase inhibitors to minimize OS and renal tissue injury in hyperoxaluria-induced kidney stone disease.


Thyroid ◽  
2013 ◽  
Vol 23 (1) ◽  
pp. 111-119 ◽  
Author(s):  
Rodrigo Soares Fortunato ◽  
William M.O. Braga ◽  
Victor H. Ortenzi ◽  
Deivid C. Rodrigues ◽  
Bruno Moulin Andrade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document