Numerical Investigation of Blood Flow Behavior in Different Orders of Vascular System

CHEST Journal ◽  
2012 ◽  
Vol 142 (4) ◽  
pp. 840A
Author(s):  
Houman Tammadon ◽  
Mehrdad Behnia ◽  
Leonard Kritharides ◽  
Masud Behnia
2016 ◽  
Vol 11 (2) ◽  
pp. 210-217 ◽  
Author(s):  
A.T. Akhmetov ◽  
A.A. Valiev ◽  
A.A. Rakhimov ◽  
S.P. Sametov ◽  
R.R. Habibullina

It is mentioned in the paper that hydrodynamic conditions of a flow in blood vessels with the stenosis are abnormal in relation to the total hemodynamic conditions of blood flow in a vascular system of a human body. A microfluidic device developed with a stepped narrowing for studying of the blood flow at abnormal conditions allowed to reveal blood structure in microchannels simulating the stenosis. Microstructure change is observed during the flow of both native and diluted blood through the narrowing. The study of hemorheological properties allowed us to determine an increasing contribution of the hydraulic resistance of the healthy part of the vessel during the stenosis formation.


2017 ◽  
Vol 22 (2) ◽  
pp. 603-612
Author(s):  
Rasoul Daneshfaraz ◽  
Ali Rezazadehjoudi ◽  
John Abraham

1990 ◽  
Vol 259 (3) ◽  
pp. R393-R404 ◽  
Author(s):  
T. H. Adair ◽  
W. J. Gay ◽  
J. P. Montani

Prolonged imbalances between the perfusion capabilities of the blood vessels and the metabolic requirements of the tissue cells often lead to modification of the vasculature to satisfy the tissue needs. This homeostatic response appears to be bidirectional, since the vascularity of a tissue can increase or decrease in parallel with primary changes in metabolic rate. The factors that mediate the responses are not well understood, but oxygen has been implicated as a major control element, since vessel growth increases during hypoxic conditions and decreases during hyperoxic conditions. The following feedback control hypothesis may apply to many different physiological situations. Decreased oxygenation causes the tissues to become hypoxic, and this initiates a variety of signals that lead to the growth of blood vessels. The increase in vascularity promotes oxygen delivery to the tissue cells by decreasing diffusion distances, increasing capillary surface area, and increasing the maximum rate of blood flow. When the tissues receive adequate amounts of oxygen even during periods of peak activity, the intermediate effectors return to normal levels, and this negative signal, in turn, stops the further development of the vasculature. Although the effector mechanisms of the hypoxic stimulus are still being investigated, adenosine, which is produced in hypoxic tissues, appears to mediate hypoxia-induced increases in vascularity in some instances. Roles for fibroblast growth factor as well as mechanical factors associated with vasodilation and increased blood flow are postulated. Although blood vessel growth is a multifactorial process, a major influence in its regulation appears to be metabolic need. If this view is correct, it may be found that many of the quantitatively significant factors that control growth in a given vasculature are themselves modulated or controlled by metabolic signals reflecting the nutritional status of the tissues which that vasculature supplies.


1995 ◽  
Vol 79 (3) ◽  
pp. 1008-1026 ◽  
Author(s):  
D. R. Fine ◽  
D. Glasser ◽  
D. Hildebrandt ◽  
J. Esser ◽  
R. E. Lurie ◽  
...  

Hepatic function can be characterized by the activity/time curves obtained by imaging the aorta, spleen, and liver. Nonparametric deconvolution of the activity/time curves is clinically useful as a diagnostic tool in determining organ transit times and flow fractions. The use of this technique is limited, however, because of numerical and noise problems in performing deconvolution. Furthermore, the interaction of part of the tracer with the spleen and gastrointestinal tract, before it enters the liver, further obscures physiological information in the deconvolved liver curve. In this paper, a mathematical relationship is derived relating the liver activity/time curve to portal and hepatic behavior. The mathematical relationship is derived by using transit time spectrum/residence time density theory. Based on this theory, it is shown that the deconvolution of liver activity/time curves gives rise to a complex combination of splenic, gastrointestinal, and liver dependencies. An anatomically and physiologically plausible parametric model of the hepatic vascular system has been developed. This model is used in conjunction with experimental data to estimate portal, splenic, and hepatic physiological blood flow parameters for eight normal volunteers. These calculated parameters, which include the portal flow fraction, the splenic blood flow fraction, and blood transit times are shown to adequately correspond to published values. In particular, the model of the hepatic vascular system identifies the portal flow fraction as 0.752 +/- 0.022, the splenic blood flow fraction as 0.180 +/- 0.023, and the liver mean transit time as 13.4 +/- 1.71 s. The model has also been applied to two portal hypertensive patients. The variation in some of the model parameters is beyond normal limits and is consistent with the observed pathology.


2014 ◽  
Vol 47 ◽  
pp. 130-138 ◽  
Author(s):  
Boyang Su ◽  
Yunlong Huo ◽  
Ghassan S. Kassab ◽  
Foad Kabinejadian ◽  
Sangho Kim ◽  
...  

2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Ulin Nuha A. Qohar ◽  
Antonella Zanna Munthe-Kaas ◽  
Jan Martin Nordbotten ◽  
Erik Andreas Hanson

In the last decade, numerical models have become an increasingly important tool in biological and medical science. Numerical simulations contribute to a deeper understanding of physiology and are a powerful tool for better diagnostics and treatment. In this paper, a nonlinear multi-scale model framework is developed for blood flow distribution in the full vascular system of an organ. We couple a quasi one-dimensional vascular graph model to represent blood flow in larger vessels and a porous media model to describe flow in smaller vessels and capillary bed. The vascular model is based on Poiseuille’s Law, with pressure correction by elasticity and pressure drop estimation at vessels' junctions. The porous capillary bed is modelled as a two-compartment domain (artery and venous) using Darcy’s Law. The fluid exchange between the artery and venous capillary bed compartments is defined as blood perfusion. The numerical experiments show that the proposed model for blood circulation: (i) is closely dependent on the structure and parameters of both the larger vessels and of the capillary bed, and (ii) provides a realistic blood circulation in the organ. The advantage of the proposed model is that it is complex enough to reliably capture the main underlying physiological function, yet highly flexible as it offers the possibility of incorporating various local effects. Furthermore, the numerical implementation of the model is straightforward and allows for simulations on a regular desktop computer.


1992 ◽  
Vol 263 (1) ◽  
pp. E57-E63 ◽  
Author(s):  
L. Jansson ◽  
S. Sandler

It has recently been shown that selective B-cell toxins alloxan and streptozotocin (STZ) possess marked effects also on the vascular system. To evaluate to what extent changes in blood perfusion of islets induced by alloxan or STZ could be of importance for diabetogenic action of these compounds, we first investigated acute effects of alloxan (75 mg/kg body wt iv) and STZ (40 mg/kg body wt iv) on both whole pancreatic blood flow (PBF) and islet blood flow (IBF) in adult rats. Alloxan caused a marked increase in IBF, which was most pronounced 3 min after administration and remained for 30 min. PBF, however, was decreased 3 min after alloxan administration but was similar to that of control animals from 10 min and onward. These two opposite effects on IBF and PBF caused the fraction of whole PBF diverted through islets to increase from approximately 10 to 50%. Pretreatment with glucose (2 g/kg body wt iv), indomethacin (3.5 mg/kg body wt iv), dimethyl sulfoxide (10 ml/kg body wt ip of a 33% solution), superoxide dismutase (SOD, 1,000 kU/kg body wt iv), NG-methyl-L-arginine (30 mg/kg body wt iv), theophylline (7 mg/kg body wt iv), or terbutaline (1 mg/kg body wt iv) failed to affect stimulation of IBF by alloxan observed at 3 min. SOD was found to exert a marked stimulation of IBF both when given alone and together with alloxan. Alloxan increased IBF and decreased PBF also in a syngeneic pancreaticoduodenal graft in rats but did not affect flow distribution in a perfused pancreas-duodenum preparation.(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Elena Hernandez-Gerez ◽  
Ian N. Fleming ◽  
Simon H. Parson

Abstract The vascular system of the spinal cord is particularly complex and vulnerable. Damage to the main vessels or alterations to the regulation of blood flow will result in a reduction or temporary cessation of blood supply. The resulting tissue hypoxia may be brief: acute, or long lasting: chronic. Damage to the vascular system of the spinal cord will develop after a traumatic event or as a result of pathology. Traumatic events such as road traffic accidents, serious falls and surgical procedures, including aortic cross-clamping, will lead to an immediate cessation of perfusion, the result of which may not be evident for several days, but may have long-term consequences including neurodegeneration. Pathological events such as arterial sclerosis, venous occlusion and spinal cord compression will result in a progressive reduction of blood flow, leading to chronic hypoxia. While in some situations the initial pathology is exclusively vascular, recent research in neurodegenerative disease has drawn attention to concomitant vascular anomalies in disorders, including amyotrophic lateral sclerosis, spinal muscular atrophy and muscular sclerosis. Understanding the role of, and tissue response to, chronic hypoxia is particularly important in these cases, where inherent neural damage exacerbates the vulnerability of the nervous system to stressors including hypoxia.


1994 ◽  
Vol 266 (5) ◽  
pp. R1488-R1492
Author(s):  
J. Szmydynger-Chodobska ◽  
A. Chodobski ◽  
C. E. Johanson

Postnatal developmental changes in blood flow to choroid plexuses of the lateral (LVCP) and fourth (4VCP) ventricles and cerebral cortex were studied in pentobarbital-anesthetized rats at 2, 3, 5, and 7-8 wk. Blood flow was measured by indicator fractionation with N-isopropyl-p-[125I]iodoamphetamine as the marker. Blood flow to the LVCP and 4VCP was 2.5 +/- 0.1 and 2.7 +/- 0.1 ml.g-1.min-1, respectively, and did not change between the 2nd and 3rd wk. However, it increased by 34% between the 3rd and 5th wk. From the age of 5 wk on, 4VCP was characterized by higher blood flow rates than LVCP. Cerebral cortical blood flow gradually increased between the 2nd and 5th wk. There was no difference in cortical blood flow between 5-wk-old and adult animals. The changes in choroidal blood flow likely represent a continuing adjustment of the choroidal vascular system to steadily increasing secretory capabilities of the maturing choroidal epithelium.


Bioimpacts ◽  
2017 ◽  
Vol 4 (4) ◽  
pp. 196-204 ◽  
Author(s):  
Seyed Esmail Razavi ◽  
Amir Ali Omidi ◽  
Massoud Saghafi Zanjani

Sign in / Sign up

Export Citation Format

Share Document