Cell Immobilization with Phosphorylated Polyvinyl Alcohol (PVA) Gel

2003 ◽  
pp. 207-216 ◽  
Author(s):  
Kuo-Cheng Chen ◽  
Jer-Yiing Houng
Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 603 ◽  
Author(s):  
Kristína Markošová ◽  
Jana Husarčíková ◽  
Monika Halásová ◽  
Robert Kourist ◽  
Michal Rosenberg ◽  
...  

Arylmalonate decarboxylase (AMD) is a monomeric enzyme of only 26 kDa. A recombinant AMDase from Bordetella bronchiseptica was expressed in Escherichia coli and the enzyme was immobilized using different techniques: entrapment in polyvinyl alcohol (PVA) gel (LentiKats®), covalent binding onto magnetic microparticles (MMP, PERLOZA s.r.o., Lovosice, Czech Republic) and double-immobilization (MMP-LentiKats®) using the previous two methods. The double-immobilized AMDase was stable in 8 repeated biocatalytic reactions. This combined immobilization technique has the potential to be applied to different small proteins.


2015 ◽  
Vol 18 (1) ◽  
pp. 47-55

<div> <p>In this paper, ethylene glycol wastewater (EGW) treatment was studied by using one anaerobic polyvinyl alcohol (PVA) gel beads based biofilm reactor. Enhanced by PVA-gel beads based biofilm, organic loading rate (OLR) about 11 g COD l<sup>-1</sup> d<sup>-1</sup> was achieved at the end of this study. Black PVA-gel beads with an average settling velocity 322 m h<sup>-1</sup> (9 cm s<sup>-1</sup>) and 0.24g VSS g<sup>-1</sup> PVA gel mainly composed of <em>Methanosarcina spp</em>. were got, while no natural granules were found in this experiment. The COD removal efficiency in this study could reach a high value about 95%. Most COD removal was contributed by the PVA-gel beads based biofilm. It could be concluded that the PVA-gel beads based biofilm reactor is appropriate for EGW treatment.</p> </div> <p>&nbsp;</p>


2020 ◽  
Author(s):  
Fatma Nur Parın ◽  
Çiğdem İnci Aydemir ◽  
Gökçe Taner ◽  
Kenan Yıldırım

Abstract Nanofibers with bioactive agents are good candidates for skin-care applications due to high spesific surface area, low density and highly porous structure. In this study, hydrophilic based bioactive nanofibers were produced via an electrospinning and electrospraying simultaneous process. Polyvinyl alcohol (PVA), polyvinyl alcohol-gelatin (PVA-Gel) and polyvinyl alcohol-alginate (PVA-Alg) polymers were used as the matrix material and folic acid (FA) particles were dispersed simultaneously on the surface of these hydrophilic nanofibers. The morphology of the nanofibers (NFs) was uniform and dispersed folic acid particles incorporated into the structure of nanofibers as confirmed by scanning electron microscopy (SEM). Thermal behavior, chemical structure of the composite nanofibers were analyzed/investigated by thermogravimetric analysis (TGA) and Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) which showed that no chemical bonding between vitamin and polymers. A controlled release of FA-loaded electrospun fibers were carried out by UV-Vis in vitro study within the 8 hour-period in artificial sweat solutions (acidic media, pH 5,44). The obtained PVA/FA, PVA-Gel/FA and PVA-Alg/FA fibers released 49.6 %, 69.55 % and 50.88 % of the sprayed FA in 8 h, indicating the influence of polymer matrix and polymer-drug interactions, on its release from the polymer matrix. Moreover, biocompatibility of all developed novel NFs was assessed by two different cytotoxicity tests,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and neutral red uptake (NRU) assay in L929 cell lines. In all cases, it is clearly concluded that these new electrospun fibers had fast-release of the vitamin and the hybrid process is suitable for transdermal patch applications, especially for skin-care products. Moreover, it has been proposed nanofiber with folic acid as a patch may prevent the COVID-19. The results of cytotoxicity assays on L929 cell reveal that all prepared NFs have no or slight cell toxicity. PVA and PVA-Gel with/without FA nanofibers seems more biocompatible than PVA-Alg nanofibers.


2000 ◽  
Vol 42 (5-6) ◽  
pp. 85-90 ◽  
Author(s):  
Y.P. Ting ◽  
G. Sun

In this work, we compared the performance of a new method of cell immobilization in a novel matrix for biosorption. Yeast cells were entrapped in a polyvinyl alcohol (PVA) matrix, based on an adapted iterative freeze-thaw-freeze process. Spherical and uniform beads were produced, and SEM micrographs confirmed that the cells were uniformly dispersed within the PVA matrix. Further experiments revealed that the use of PVA as the immobilization matrix conferred better mechanical and chemical properties than the commonly used calcium alginate matrix. Experiments also showed that the PVA matrix gave rise to a lower mass transfer resistance than the alginate matrix. Finally, it was established that PVA-yeast biosorbent beads could be regenerated using dilute hydrochloric acid (10mM) and reused for at least five biosorption cycles with virtually no decrease in its bisorption capacity. Different metal/biosorbent in PVA-immobilized systems are currently being investigated.


2020 ◽  
Vol 9 (2) ◽  
pp. 2477-2486 ◽  
Author(s):  
Hairul Abral ◽  
Arief Atmajaya ◽  
Melbi Mahardika ◽  
Fadli Hafizulhaq ◽  
Kadriadi ◽  
...  
Keyword(s):  

2001 ◽  
Vol 43 (11) ◽  
pp. 17-23 ◽  
Author(s):  
K.-M. Khoo ◽  
Y.-P. Ting

The use of polyvinyl alcohol (PVA) as a matrix for cell immobilization has been extensively studied in various biological systems. However, its suitability has not been reported in biosorption studies where inactivated cells are used as biosorbents. In this work, PVA and alginate as immobilization matrices (for the biosorption of gold by a fungal biomass) were investigated by examining their physical and chemical properties. Compared to alginate gels, PVA gels were shown to be more resistant to mechanical abrasion, and more stable over a wide pH range. Although the PVA matrix did not affect the equilibrium uptake in gold biosorption studies, the time required to attain a removal of 80% of the initial metal concentration was 1.7 times that of the freely suspended biosorbent. This contrasts with the alginate immobilized biosorbent which required an increase of well over ten times the duration to attain the same removal efficiency. Results indicated that PVA gels conferred a lower mass transfer resistance than alginate gels. Gold biosorption by the PVA-immobilized fungi followed the commonly used Langmuir and Freundlich adsorption isotherm models although the former gave a better fit. The uptake of gold was dependent on the initial gold concentration and the biomass loading. Using a fungal biosorbent and gold ions as the model system, the results demonstrate the potential in the use of the PVA as a cell immobilisation matrix for biosorption studies.


2015 ◽  
Vol 73 (7) ◽  
pp. 1511-1519 ◽  
Author(s):  
Khalid Muzamil Gani ◽  
Jasdeep Singh ◽  
Nitin Kumar Singh ◽  
Muntjeer Ali ◽  
Vipin Rose ◽  
...  

In this study, the effectiveness of polyvinyl alcohol (PVA) gel beads in treating domestic wastewater was investigated: a moving bed biofilm reactor (MBBR) configuration (oxic-anoxic and oxic) with 10% filling fraction of biomass carriers was operated in a continuously fed regime at temperatures of 25, 20, 15 and 6 °C with hydraulic retention times (HRTs) of 32 h, 18 h, 12 h and 9 h, respectively. Influent loadings were in the range of 0.22–1.22 kg N m−3 d−1 (total nitrogen (TN)), 1.48–7.82 kg chemical oxygen demand (COD) m−3 d−1 (organic) and 0.12–0.89 kg NH4+-N m−3d−1 (ammonia nitrogen). MBBR performance resulted in the maximum TN removal rate of 1.22 kg N m−3 d−1 when the temperature and HRT were 6 °C and 9 h, respectively. The carbon removal rate at this temperature and HRT was 6.82 kg COD m−3 d−1. Ammonium removal rates ranged from 0.13 to 0.75 kg NH4+-N m−3 d−1 during the study. Total phosphorus and suspended solid removal efficiency ranged from 84 to 98% and 85 to 94% at an influent concentration of 3.3–7.1 mg/L and 74–356 mg/L, respectively. The sludge wasted from the MBBR exhibited light weight features characterized by sludge volume index value of 185 mL/g. Experimental data obtained can be useful in further developing the concept of PVA gel based wastewater treatment systems.


Author(s):  
Riham Surkatti ◽  
Muftah H. El-Naas ◽  
Mark C.M. Van Loosdrecht ◽  
Fatima Al-Naemi ◽  
Udeogu Onwusogh

2018 ◽  
Vol 54 (4A) ◽  
pp. 197
Author(s):  
To Tien Tai

In this study, the biocarrier was made of 8 % (w/v) polyvinyl alcohol (PVA) solution dropped into saturated solution of boric acid (6 %, w/v), then immersed for 2 hours to form PVA-boric bead. In order to maintain the crosslinked beads, it is subsequently immersed in 1M sodium sulfate solution for 1 hour. PVA gel beads have the diameter of 3.5 - 5.0 mm, a specific gravity of 1.03 - 1.08 g/cm3, high mechanical strength and good elasticity. The surface and internal structure particle were observed under a scanning electron microscope (SEM). The application of PVA beads in microbial immobilization was initially examined in three UASB reactors treating rubber wastewater with sludge and PVA beads ratios of 1/1, 2/1, 3/1 (v/v), respectively. Promising result of bio-immobilization was achieved, at ratio of 1/1, the SMA of PVA beads was 0.133 g COD/gVSS/day, corresponding to 17 % of the suspended sludge’s value in the same reactor and the attached biomass was 0.936 g VSS/g dried PVA bead after 90 days.


Sign in / Sign up

Export Citation Format

Share Document