Electrophysiological Measurements on Reconstituted Outer Membranes

2003 ◽  
pp. 355-370 ◽  
Author(s):  
Andre Wiese ◽  
Ulrich Seydel

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesca Mancini ◽  
Gianmarco Gasperini ◽  
Omar Rossi ◽  
Maria Grazia Aruta ◽  
Maria Michelina Raso ◽  
...  

AbstractGMMA are exosomes released from engineered Gram-negative bacteria resembling the composition of outer membranes. We applied the GMMA technology for the development of an O-Antigen (OAg) based vaccine against Shigella sonnei, the most epidemiologically relevant cause of shigellosis. S. sonnei OAg has been identified as a key antigen for protective immunity, and GMMA are able to induce anti-OAg-specific IgG response in animal models and healthy adults. The contribution of protein-specific antibodies induced upon vaccination with GMMA has never been fully elucidated. Anti-protein antibodies are induced in mice upon immunization with either OAg-negative and OAg-positive GMMA. Here we demonstrated that OAg chains shield the bacteria from anti-protein antibody binding and therefore anti-OAg antibodies were the main drivers of bactericidal activity against OAg-positive bacteria. Interestingly, antibodies that are not targeting the OAg are functional against OAg-negative bacteria. The immunodominant protein antigens were identified by proteomic analysis. Our study confirms a critical role of the OAg on the immune response induced by S. sonnei GMMA. However, little is known about OAg length and density regulation during infection and, therefore, protein exposure. Hence, the presence of protein antigens on S. sonnei GMMA represents an added value for GMMA vaccines compared to other OAg-based formulations.





2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Young Hoon Kim ◽  
Eun Young Han ◽  
Jinseok Kim ◽  
Kyu‑Bum Seo ◽  
Young Tae Jeon ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.



1992 ◽  
Vol 20 (2) ◽  
pp. 218-221
Author(s):  
Henning F. Bjerregaard

An established epithelial cell line (A6) from a South African clawed toad (Xenopus laevis) kidney was used as a model for the corneal epithelium of the eye in order to determine ocular irritancy. When grown on Millipore filter inserts, A6 cells form a monolayer epithelium of high electrical resistance and generate a trans-epithelial potential difference. These two easily-measured electrophysiological endpoints showed a dose-related decrease after exposure for 24 hours to seven selected chemicals of different ocular irritancy potential. It was demonstrated that both trans-epithelial resistance and potential ranked closely with in vivo eye irritancy data and correlated well (r = 0.96) with loss of trans-epithelial impermeability of Madin-Darby canine kidney (MDCK) cells, detected by use of a fluorescein leakage assay.



Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Michael Travisano ◽  
Richard E Lenski

Abstract This study investigates the physiological manifestation of adaptive evolutionary change in 12 replicate populations of Escherichia coli that were propagated for 2000 generations in a glucose-limited environment. Representative genotypes from each population were assayed for fitness relative to their common ancestor in the experimental glucose environment and in 11 novel single-nutrient environments. After 2000 generations, the 12 derived genotypes had diverged into at least six distinct phenotypic classes. The nutrients were classified into four groups based upon their uptake physiology. All 12 derived genotypes improved in fitness by similar amounts in the glucose environment, and this pattern of parallel fitness gains was also seen in those novel environments where the limiting nutrient shared uptake mechanisms with glucose. Fitness showed little or no consistent improvement, but much greater genetic variation, in novel environments where the limiting nutrient differed from glucose in its uptake mechanisms. This pattern of fitness variation in the novel nutrient environments suggests that the independently derived genotypes adapted to the glucose environment by similar, but not identical, changes in the physiological mechanisms for moving glucose across both the inner and outer membranes.



1994 ◽  
Vol 269 (26) ◽  
pp. 17572-17576
Author(s):  
T. Kurachi ◽  
I. Morita ◽  
T. Oki ◽  
T. Ueki ◽  
K. Sakaguchi ◽  
...  


1996 ◽  
Vol 19 (7) ◽  
pp. 1082-1088 ◽  
Author(s):  
RUEY-KANG R. CHANG ◽  
WILLIAM G. STEVENSON ◽  
GLENN T. WETZEL ◽  
KEVIN SHANNON ◽  
VICTOR C. BAUM ◽  
...  


2007 ◽  
Vol 23 (4) ◽  
pp. 513-519 ◽  
Author(s):  
Jinjiang Yu ◽  
Shrawan Kumar Jha ◽  
Lidan Xiao ◽  
Qingjun Liu ◽  
Ping Wang ◽  
...  


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 444
Author(s):  
Motoharu Hirano ◽  
Chihiro Saito ◽  
Hidetomo Yokoo ◽  
Chihiro Goto ◽  
Ryuji Kawano ◽  
...  

Magainin 2 (Mag2), which was isolated from the skin of the African clawed frog, is a representative antimicrobial peptide (AMP) that exerts antimicrobial activity via microbial membrane disruption. It has been reported that the helicity and amphipathicity of Mag2 play important roles in its antimicrobial activity. We investigated and recently reported that 17 amino acid residues of Mag2 are required for its antimicrobial activity, and accordingly developed antimicrobial foldamers containing α,α-disubstituted amino acid residues. In this study, we further designed and synthesized a set of Mag2 derivatives bearing the hydrocarbon stapling side chain for helix stabilization. The preferred secondary structures, antimicrobial activities, and cell-membrane disruption activities of the synthesized peptides were evaluated. Our analyses revealed that hydrocarbon stapling strongly stabilized the helical structure of the peptides and enhanced their antimicrobial activity. Moreover, peptide 2 stapling between the first and fifth position from the N-terminus showed higher antimicrobial activity than that of Mag2 against both gram-positive and gram-negative bacteria without exerting significant hemolytic activity. To investigate the modes of action of tested peptides 2 and 8 in antimicrobial and hemolytic activity, electrophysiological measurements were performed.



Sign in / Sign up

Export Citation Format

Share Document