N-Linked Glycan Characterization of Heterologous Proteins

2007 ◽  
pp. 139-150
Author(s):  
Huijuan Li ◽  
Robert G. Miele ◽  
Teresa I. Mitchell ◽  
Tillman U. Gerngross
2004 ◽  
Vol 50 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Marcus Schallmey ◽  
Ajay Singh ◽  
Owen P Ward

Bacillus species continue to be dominant bacterial workhorses in microbial fermentations. Bacillus subtilis (natto) is the key microbial participant in the ongoing production of the soya-based traditional natto fermentation, and some Bacillus species are on the Food and Drug Administration's GRAS (generally regarded as safe) list. The capacity of selected Bacillus strains to produce and secrete large quantities (20–25 g/L) of extracellular enzymes has placed them among the most important industrial enzyme producers. The ability of different species to ferment in the acid, neutral, and alkaline pH ranges, combined with the presence of thermophiles in the genus, has lead to the development of a variety of new commercial enzyme products with the desired temperature, pH activity, and stability properties to address a variety of specific applications. Classical mutation and (or) selection techniques, together with advanced cloning and protein engineering strategies, have been exploited to develop these products. Efforts to produce and secrete high yields of foreign recombinant proteins in Bacillus hosts initially appeared to be hampered by the degradation of the products by the host proteases. Recent studies have revealed that the slow folding of heterologous proteins at the membrane – cell wall interface of Gram-positive bacteria renders them vulnerable to attack by wall-associated proteases. In addition, the presence of thiol-disulphide oxidoreductases in B. subtilis may be beneficial in the secretion of disulphide-bond-containing proteins. Such developments from our understanding of the complex protein translocation machinery of Gram-positive bacteria should allow the resolution of current secretion challenges and make Bacillus species preeminent hosts for heterologous protein production. Bacillus strains have also been developed and engineered as industrial producers of nucleotides, the vitamin riboflavin, the flavor agent ribose, and the supplement poly-γ-glutamic acid. With the recent characterization of the genome of B. subtilis 168 and of some related strains, Bacillus species are poised to become the preferred hosts for the production of many new and improved products as we move through the genomic and proteomic era.Key words: Bacillus, fermentation, enzymes, insecticides, vitamins, antibiotics, D-ribose.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Jian-Lu An ◽  
Wei-Xin Zhang ◽  
Wei-Ping Wu ◽  
Guan-Jun Chen ◽  
Wei-Feng Liu

Abstract Background Structurally stable α-galactosidases are of great interest for various biotechnological applications. More thermophilic α-galactosidases with high activity and structural stability have therefore to be mined and characterized. On the other hand, few studies have been performed to prominently enhance the AOX1 promoter activity in the commonly used Pichia pastoris system, in which production of some heterologous proteins are insufficient for further study. Results ReGal2 encoding a thermoactive α-galactosidase was identified from the thermophilic (hemi)cellulolytic fungus Rasamsonia emersonii. Significantly increased production of ReGal2 was achieved when ReGal2 was expressed in an engineered Pastoris pichia expression system with a modified AOX1 promoter and simultaneous fortified expression of Mxr1 that is involved in transcriptionally activating AOX1. Purified ReGal2 exists as an oligomer and has remarkable thermo-activity and thermo-tolerance, exhibiting maximum activity of 935 U/mg towards pNPGal at 80 °C and retaining full activity after incubation at 70 °C for 60 h. ReGal2 is insensitive to treatments by many metal ions and exhibits superior tolerance to protein denaturants. Moreover, ReGal2 efficiently hydrolyzed stachyose and raffinose in soybeans at 70 °C in 3 h and 24 h, respectively. Conclusion A modified P. pichia expression system with significantly enhanced AOX1 promoter activity has been established, in which ReGal2 production is markedly elevated to facilitate downstream purification and characterization. Purified ReGal2 exhibited prominent features in thermostability, catalytic activity, and resistance to protein denaturants. ReGal2 thus holds great potential in relevant biotechnological applications.


Author(s):  
Huijuan Li ◽  
Robert G. Miele ◽  
Teresa I. Mitchell ◽  
Tillman U. Gerngross

Microbiology ◽  
2006 ◽  
Vol 152 (9) ◽  
pp. 2611-2618 ◽  
Author(s):  
N. G. Cortes-Perez ◽  
I. Poquet ◽  
M. Oliveira ◽  
J. J. Gratadoux ◽  
S. M. Madsen ◽  
...  

A Lactococcus lactis strain deficient in both its major proteases, intracellular (ClpP) and extracellular (HtrA), was constructed and characterized. This strain, hereafter called clpP-htrA, could be obtained only by conjugation between a clpP donor strain and an htrA recipient strain in the NZ9000 context, allowing heterologous gene expression under the control of the NICE (nisin-controlled expression) system. The clpP-htrA double mutant showed both higher stress tolerance (e.g. high temperature and ethanol resistance) and higher viability than single clpP or htrA mutant strains. In addition, the secretion rate of two heterologous proteins (staphylococcal nuclease Nuc and Nuc-E7) was also higher in clpP-htrA than in the wild-type strain. This strain should be a useful host for high-level production and quality of stable heterologous proteins.


Microbiology ◽  
2004 ◽  
Vol 150 (5) ◽  
pp. 1197-1205 ◽  
Author(s):  
Jason J. Millership ◽  
Xiaomin Cai ◽  
Guan Zhu

Replication protein A (RPA) is a heterotrimeric complex of single-stranded DNA-binding proteins that play multiple roles in eukaryotic DNA metabolism. The RPA complex is typically composed of heterologous proteins (termed RPA1, RPA2 and RPA3) in animals, plants and fungi, which possess different functions. Previously, two distinct, short-type RPA large subunits (CpRPA1 and CpRPA1B) from the apicomplexan parasite Cryptosporidium parvum were characterized. Here are reported the identification and characterization of a putative middle RPA subunit (CpRPA2) from this unicellular organism. Although the CpRPA2 gene encodes a predicted 40·1 kDa peptide, which is larger than other RPA2 subunits characterized to date, Western blot analysis of oocyst preparations detected a native CpRPA2 protein with a molecular mass of approximately 32 kDa, suggesting that CpRPA2 might undergo post-translational cleavage or the gene was translated at an alternative start codon. Immunofluorescence microscopy using a rabbit anti-CpRPA2 antibody revealed that CpRPA2 protein was mainly distributed in the cytosol (rather than the nuclei) of C. parvum sporozoites. Semi-quantitative RT-PCR data indicated that CpRPA2 was differentially expressed in a tissue culture model with highest expression in intracellular parasites infecting HCT-8 cells for 36 and 60 h. Sequence comparison suggests that RPA2 is a group of poorly conserved proteins. Nonetheless, functional analyses of recombinant proteins confirmed that CpRPA2 is a single-stranded DNA-binding protein and that it could serve as an in vitro phosphorylation target by a DNA-dependent protein kinase. The minimal length of poly(dT) required for CpRPA2 binding is 17 nucleotides, and the DNA-binding capability was inhibited by phosphorylation in vitro. These observations provide additional evidence on the divergence of RPA proteins between C. parvum and host, implying that the parasite DNA replication machinery could be explored as a chemotherapeutic target.


2004 ◽  
Vol 70 (3) ◽  
pp. 1600-1607 ◽  
Author(s):  
S. Nouaille ◽  
J. Commissaire ◽  
J. J. Gratadoux ◽  
P. Ravn ◽  
A. Bolotin ◽  
...  

ABSTRACT Lactococcus lactis, a food-grade nonpathogenic lactic acid bacterium, is a good candidate for the production of heterologous proteins of therapeutic interest. We examined host factors that affect secretion of heterologous proteins in L. lactis. Random insertional mutagenesis was performed with L. lactis strain MG1363 carrying a staphylococcal nuclease (Nuc) reporter cassette in its chromosome. This cassette encodes a fusion protein between the signal peptide of the Usp45 lactococcal protein and the mature moiety of a truncated form of Nuc (NucT). The Nuc secretion efficiency (secreted NucT versus total NucT) from this construct is low in L. lactis (∼40%). Twenty mutants affected in NucT production and/or in secretion capacity were selected and identified. In these mutants, several independent insertions mapped in the dltA gene (involved in d-alanine transfer in lipoteichoic acids) and resulted in a NucT secretion defect. Characterization of the dltA mutant phenotype with respect to NucT secretion revealed that it is involved in a late secretion stage by causing mature NucT entrapment at the cell surface.


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Sign in / Sign up

Export Citation Format

Share Document