Faculty Opinions recommendation of Characterization of a novel LysM domain from Lactobacillus fermentum bacteriophage endolysin and its use as an anchor to display heterologous proteins on the surfaces of lactic acid bacteria.

Author(s):  
Aidan Coffey
2010 ◽  
Vol 76 (8) ◽  
pp. 2410-2418 ◽  
Author(s):  
Shumin Hu ◽  
Jian Kong ◽  
Wentao Kong ◽  
Tingting Guo ◽  
Mingjie Ji

ABSTRACT The endolysin Lyb5, from Lactobacillus fermentum temperate bacteriophage φPYB5, showed a broad lytic spectrum against Gram-positive as well as Gram-negative bacteria. Sequence analysis revealed that the C terminus of the endolysin Lyb5 (Ly5C) contained three putative lysin motif (LysM) repeat regions, implying that Ly5C was involved in bacterial cell wall binding. To investigate the potential of Ly5C for surface display, green fluorescent protein (GFP) was fused to Ly5C at its N or C terminus and the resulting fusion proteins were expressed in Escherichia coli. After being mixed with various cells in vitro, GFP was successfully displayed on the surfaces of Lactococcus lactis, Lactobacillus casei, Lb. brevis, Lb. plantarum, Lb. fermentum, Lb. delbrueckii, Lb. helveticus, and Streptococcus thermophilus cells. Increases in the fluorescence intensities of chemically pretreated L. lactis and Lb. casei cells compared to those of nonpretreated cells suggested that the peptidoglycan was the binding ligand for Ly5C. Moreover, the pH and concentration of sodium chloride were optimized to enhance the binding capacity of GFP-Ly5C, and high-intensity fluorescence of cells was observed under optimal conditions. All results suggested that Ly5C was a novel anchor for constructing a surface display system for lactic acid bacteria (LAB). To demonstrate the applicability of the Ly5C-mediated surface display system, β-galactosidase (β-Gal) from Paenibacillus sp. strain K1, replacing GFP, was functionally displayed on the surfaces of LAB cells via Ly5C. The success in surface display of GFP and β-Gal opened up the feasibility of employing the cell wall anchor of bacteriophage endolysin for surface display in LAB.


2021 ◽  
Vol 709 (1) ◽  
pp. 012020
Author(s):  
Evy Rossi ◽  
Akhyar Ali ◽  
Raswen Efendi ◽  
Fajar Restuhadi ◽  
Yelmira Zalfiatri ◽  
...  

2012 ◽  
Vol 58 (3) ◽  
pp. 163-172 ◽  
Author(s):  
Jie Yu ◽  
Wa Gao ◽  
Manjun Qing ◽  
Zhihong Sun ◽  
Weihong Wang ◽  
...  

2016 ◽  
Vol 25 (2) ◽  
pp. 595-599 ◽  
Author(s):  
Jae-Hwan Kim ◽  
Jingmei Li ◽  
Seon-Kyeong Han ◽  
Pei Qin ◽  
Jushin Kim ◽  
...  

2012 ◽  
Vol 18 (6) ◽  
pp. 861-867 ◽  
Author(s):  
Ayaka IUCHI ◽  
Sachi HARUGUCHI ◽  
Wiyada MONGKOLTHANARUK ◽  
Jiro ARIMA ◽  
Mitsutoshi NAGASE ◽  
...  

2021 ◽  
pp. 108201322110399
Author(s):  
Jana Štefániková ◽  
Július Árvay ◽  
Simona Kunová ◽  
Przemysław Łukasz Kowalczewski ◽  
Miroslava Kačániová

This paper describes the results of the characterization of a traditional Slovak cheese called “May bryndza” with regard to the profiles of volatile organic compounds and lactic acid bacteria. Samples of “May bryndza“ cheese produced solely from unpasteurized ewe's milk were collected from 4 different Slovak farms, and samples of the cheese produced from a mixture of 2 types of milk (raw ewe's and pasteurized cow's milk) were collected from 3 different Slovak industrial dairies. There were 15 compounds detected and identified by the electronic nose. The impact of the kind of milk and the kind of dairy on the aroma profile of the product was not confirmed by PCA. The compounds with the highest relative contents in samples were acetoin (2.59%–24.55%), acetic acid (6.69%–13.39%), methoxy-phenyl-oxime (4.49%–8.52%), butanoic acid (1.89%–5.67%), and 2,3-butanediol (0.98%–4.08%), which were determined with gas chromatography. A total of 1533 isolates of LAB were obtained from the “May bryndza” cheese samples. Four families, five genera, and 19 species were identified with mass spectrometry, and isolated bacteria, both from the farm and industry dairies were the most frequently found to belong to Lactococcus lactis subsp. lactis.


2014 ◽  
Vol 33 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Hani BELHADJ ◽  
Daoud HARZALLAH ◽  
Dalila BOUAMRA ◽  
Seddik KHENNOUF ◽  
Saliha DAHAMNA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document