Fathom: A sonic surface bordering underwater and acoustic worlds

2014 ◽  
Vol 12 (1) ◽  
pp. 5-14
Author(s):  
Jane Grant ◽  
John Matthias ◽  
Simon Honywill
Keyword(s):  
2015 ◽  
Vol 07 (02) ◽  
pp. 1550019 ◽  
Author(s):  
A. Kuzmin

2D and 3D transonic flows in a channel of variable cross-section are studied numerically using a solver based on the Reynolds-averaged Navier–Stokes equations. The flow velocity is supersonic at the inlet and outlet of the channel. Between the supersonic regions, there is a local subsonic region whose upstream boundary is a shock wave, whereas the downstream boundary is a sonic surface. The sonic surface gives rise to an instability of the shock wave position in the channel. Computations reveal a hysteresis in the shock position versus the inflow Mach number. A dependence of the hysteresis on the velocity profile given at the inlet is examined.


2013 ◽  
Author(s):  
Mengxing Li ◽  
Evgeniy Torgashov ◽  
Aleksandra Varnavina ◽  
Akeksey Khamzin ◽  
Brandon Goodwin ◽  
...  
Keyword(s):  

2018 ◽  
Vol 168 ◽  
pp. 02006
Author(s):  
Martin Luxa

The paper deals with sonic surface in a modern turbine wheel consisting of non-prismatic ultra long blades. The whole inter-blade channel is choked. Different positions and shapes of the sonic line in particular cross-sections along the span are observed. The sensitivity of sonic line formation to small changes of effective shape of the inter-blade channel in the root section and the influence of inlet angle, stagger angle and pitch/chord ratio in the tip section are discussed. The problematic of sonic line development in the case of supersonic inlet flow filed is also described. The presented work is based on results of theoretical, experimental and numerical approaches.


2013 ◽  
Vol 44 (2) ◽  
pp. 255-272
Author(s):  
Cesar S. Eschenazi ◽  
Carlos Frederico B. Palmeira

2020 ◽  
Vol 500 (3) ◽  
pp. 3382-3393
Author(s):  
S Carolan ◽  
A A Vidotto ◽  
C Villarreal D’Angelo ◽  
G Hazra

ABSTRACT We use 3D hydrodynamics simulations followed by synthetic line profile calculations to examine the effect increasing the strength of the stellar wind has on observed Ly α transits of a hot Jupiter (HJ) and a warm Neptune (WN). We find that increasing the stellar wind mass-loss rate from 0 (no wind) to 100 times the solar mass-loss rate value causes reduced atmospheric escape in both planets (a reduction of 65 per cent and 40 per cent for the HJ and WN, respectively, compared to the ‘no wind’ case). For weaker stellar winds (lower ram pressure), the reduction in planetary escape rate is very small. However, as the stellar wind becomes stronger, the interaction happens deeper in the planetary atmosphere, and, once this interaction occurs below the sonic surface of the planetary outflow, further reduction in evaporation rates is seen. We classify these regimes in terms of the geometry of the planetary sonic surface. ‘Closed’ refers to scenarios where the sonic surface is undisturbed, while ‘open’ refers to those where the surface is disrupted. We find that the change in stellar wind strength affects the Ly α transit in a non-linear way (note that here we do not include charge-exchange processes). Although little change is seen in planetary escape rates (≃ 5.5 × 1011 g s−1) in the closed to partially open regimes, the Ly α absorption (sum of the blue [−300, −40 km s−1] and red [40, 300 km s−1] wings) changes from 21 to 6 per cent as the stellar wind mass-loss rate is increased in the HJ set of simulations. For the WN simulations, escape rates of ≃ 6.5 × 1010 g s−1 can cause transit absorptions that vary from 8.8 to 3.7 per cent, depending on the stellar wind strength. We conclude that the same atmospheric escape rate can produce a range of absorptions depending on the stellar wind and that neglecting this in the interpretation of Ly α transits can lead to underestimation of planetary escape rates.


2007 ◽  
Vol 580 ◽  
pp. 31-81 ◽  
Author(s):  
MATEI I. RADULESCU ◽  
GARY J. SHARPE ◽  
CHUNG K. LAW ◽  
JOHN H. S. LEE

The study analyses the cellular reaction zone structure of unstable methane–oxygen detonations, which are characterized by large hydrodynamic fluctuations and unreacted pockets with a fine structure. Complementary series of experiments and numerical simulations are presented, which illustrate the important role of hydrodynamic instabilities and diffusive phenomena in dictating the global reaction rate in detonations. The quantitative comparison between experiment and numerics also permits identification of the current limitations of numerical simulations in capturing these effects. Simulations are also performed for parameters corresponding to weakly unstable cellular detonations, which are used for comparison and validation. The numerical and experimental results are used to guide the formulation of a stochastic steady one-dimensional representation for such detonation waves. The numerically obtained flow fields were Favre-averaged in time and space. The resulting one-dimensional profiles for the mean values and fluctuations reveal the two important length scales, the first being associated with the chemical exothermicity and the second (the ‘hydrodynamic thickness’) with the slower dissipation of the hydrodynamic fluctuations, which govern the location of the average sonic surface. This second length scale is found to be much longer than that predicted by one-dimensional reaction zone calculations.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
P. Shokouhi ◽  
A. Zoëga ◽  
H. Wiggenhauser

The changes in the sonic surface wave velocity of concrete under stress were investigated in this paper. Surface wave velocities at sonic frequency range were measured on a prismatic concrete specimen undergoing several cycles of uniaxial compression. The loading was applied (or removed) gradually in predefined small steps (stress-controlled). The surface wave velocity was measured at every load step during both loading and unloading phases. Acoustic Emission (AE) test was conducted simultaneously to monitor the microcracking activities at different levels of loading. It was found that the sonic surface wave velocity is highly stress dependent and the velocity-stress relationship follows a particular trend. The observed trend could be explained by a combination of acoustoelasticity and microcracking theories, each valid over a certain range of applied stresses. Having measured the velocities while unloading, when the material suffers no further damage, the effect of stress and damage could be differentiated. The slope of the velocity-stress curves over the elastic region was calculated for different load cycles. This quantity was normalized to yield a dimensionless nonlinear parameter. This parameter generally increases with the level of induced damage in concrete.


Sign in / Sign up

Export Citation Format

Share Document