scholarly journals Characteristics analysis of interior and inset type permanent magnet motors for electric vehicle applications

2021 ◽  
Vol 12 (1) ◽  
pp. 1-9
Author(s):  
Pudji Irasari ◽  
Ketut Wirtayasa ◽  
Puji Widiyanto ◽  
Muhammad Fathul Hikmawan ◽  
Muhammad Kasim

Permanent magnet motors (PMMs) are widely used in electric vehicles because of their benefits. Based on the permanent magnet topologies on the rotor, PMMs are classified into three types: surface mounted PMM, inset PMM, and interior PMM. This paper discusses a comparison of the characteristics of interior and inset types of PMMs for electric vehicle applications. The study aims to find out the effect of the rotor construction on the magnetic characteristics, torque-speed characteristics, and cogging torque. Simulations were carried out analytically and numerically using the FEMM 4.2 software. The simulation results at the base speed show that the interior PMM generates a higher torque but with a lower rotation, namely 56.47 Nm and 3162 rpm, respectively, while the inset PMM produces higher rotation 4200 rpm but lower output torque of 46.01 Nm. However, with a higher saliency ratio, the interior PMM produces higher maximum torque and speed at both constant torque and field weakening regions than the PMM inset, which is 92.87 Nm and 6310 rpm, consecutively. In terms of cogging torque, the interior PMM raises it slightly higher (2.90 Nm) than the inset PMM (1.93 Nm). The results conclude that, in general, the interior PMM shows better performance in all studied regions and is preferable for electric vehicle applications.

2019 ◽  
Vol 140 ◽  
pp. 10006
Author(s):  
Aleksandr Lutonin ◽  
Andrey Shklyarskiy ◽  
Yaroslav Shklyarskiy

This paper represents control strategy of anisotropic permanent magnet synchronous motor (IPMSM) in the field-weakening region. Field weakening controller allows to increase maximum achievable speed with output torque reduction. Proposed control system consists of four general modes: MTPA (maximum torque per ampere), MC (maximum current), FW (field weakening), and MTPV (maximum torque per voltage) which must be chosen accordingly to motor speed, current and torque references. Operation point is found as an intersection of torque hyperbola and voltage ellipse curves in d-q motor’s current reference frame involving motor parameters’ limits. However, due to nonlinear dependence between torque and voltage equations, it is quite complicated to obtain both right control mode selection and reference output calculation. In order to solve this problem, a unified control algorithm adopted for wide speed and torque reference with online constraints calculation is proposed. Matlab/Simulink control model of PMSM motor and control system were designed in order to show developed strategy performance. Simulation results shows increasing of speed limit by more than 2.5 times related to nominal speed with high controller’s response. However, speed limit increasing leads to a decrease in motor’s output torque. Due to this fact, presented control strategy is not suitable for applications where nominal torque level is essential for all speed operation points.


Author(s):  
Vicente Simon-Sempere ◽  
Auxiliadora Simon-Gomez ◽  
Manuel Burgos ◽  
Jose-Ramon Cerquides-Bueno

2012 ◽  
Vol 59 (6) ◽  
pp. 2484-2494 ◽  
Author(s):  
Sisuda Chaithongsuk ◽  
Babak Nahid-Mobarakeh ◽  
Jean-Paul Caron ◽  
Noureddine Takorabet ◽  
Farid Meibody-Tabar

Chapter 4 presents an approach to obtain the power simulation model of electric machines that would be practically useful in hybrid power train simulation studies. The induction motor (AC) and the permanent magnet motor’s (PM) mathematical dynamic models are based on the necessary and fundamental knowledge conveyed in the previous chapter. These generic models are here adapted to the hybrid power train requirements, while the mechanical characteristics of the vehicle’s driving system are relegated to the background. The vector field oriented control of induction and permanent magnet motors is applied in the conducted mathematical modeling. The influence of the controlled voltage frequency is discussed as well. In the case of permanent magnet motors, the adjusted method of magnetic field weakening is very important during pulse modulation (PWM) control. The chapter presents the model of synchronous permanent motor magnetic field weakening. The basic simulation studies’ results dedicated especially to the above-mentioned electric motors are included. One of the targets of these simulations is the determination of these electric machines’ static characteristics (motor’s map) as the function: output mechanical torque versus the motors’ shaft rotational speed. This feature is indicated as the map of electric machines connected with its efficiency in a four quarterly operation (4Q), which means the operation of the motor/generator mode in two directions of the shaft rotational speed, which appears very useful in practice.


Sign in / Sign up

Export Citation Format

Share Document