scholarly journals Divergent response of tree-ring width and maximum latewood density of Abies faxoniana to warming trends at the timberline of the western Qinling Mountains and northeastern Tibetan Plateau, China

Silva Fennica ◽  
2015 ◽  
Vol 49 (4) ◽  
Author(s):  
Feng Chen ◽  
Yujiang Yuan ◽  
Wenshou Wei ◽  
Tongwen Zhang ◽  
Huaming Shang ◽  
...  
Trees ◽  
2006 ◽  
Vol 21 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Alexander V. Kirdyanov ◽  
Eugene A. Vaganov ◽  
Malcolm K. Hughes

2021 ◽  
Author(s):  
Tom De Mil ◽  
Matthew Salzer ◽  
Charlotte Pearson ◽  
Valerie Trouet ◽  
Jan Van den Bulcke

<p>Great Basin Bristlecone pine (Pinus longaeva) is known for its longevity. The longest continuous tree-ring width chronology covers more than 9000 years. Tree-ring width of upper treeline bristlecone pine trees is influenced by summer temperature variability at decadal to centennial scales, but to infer a temperature signal on interannual scales, Maximum Latewood Density (MXD) is a better proxy. Here, we present a preliminary MXD chronology to investigate the temperature signal in upper treeline and lower elevation bristlecone pines. MXD was measured with an X-ray Computed Tomography toolchain in 24 dated cores,  with the oldest sample dating back to 776 CE. Ring and fibre angles were corrected and two MXD chronologies for different elevations were developed, which will be used to study climate-growth relationships and the effect of elevation on them. Future scanning will allow constructing a 5000+ year-long MXD chronology from upper treeline sites, which will provide an annual-resolution North American temperature record covering the mid-to-late Holocene.</p>


1992 ◽  
Vol 22 (9) ◽  
pp. 1290-1296 ◽  
Author(s):  
Rosanne D. D'Arrigo ◽  
Gordon C. Jacoby ◽  
Rosemary M. Free

In remote subarctic North America, instrumental records are very short and sparsely distributed. Yet a long-term understanding of subarctic climate is critical to studies of global change. Annual tree-ring width and maximum latewood density are complementary, high-resolution parameters with different environmental and physiological controls that can be used to assess recent centuries of climatic change. In this paper we present a comparison of the different temperature information inferred from these parameters for white spruce (Piceaglauca (Moench) Voss), a dominant North American latitudinal tree line species. Ring-width and maximum latewood density chronologies (with a common period from 1720–1977) are shown for five sites along a widely spaced transect of the forest–tundra transition in northern Canada. The positive temperature response of maximum latewood density to year to year local temperatures is more consistent and covers a longer portion of the growing season than does that of ring width. Unlike density, the ring-width data show a preference for cold spring conditions. Some, but not all, of the ring-width and density series display increases during the recent century's large-scale climatic warming trend. It is concluded that both types of parameters are necessary for understanding changes in climate and forest dynamics at the northern tree line.


2014 ◽  
Vol 41 (3) ◽  
pp. 234-244 ◽  
Author(s):  
Feng Chen ◽  
Yujiang Yuan ◽  
Wenshou Wei ◽  
Shulong Yu ◽  
Huaming Shang ◽  
...  

Abstract We developed a Faxon fir (Abies faxoniana) tree-ring width chronology at the timberline in the western Qinling Mountains, China. Herein February–July mean temperature was reconstructed for Zhouqu in the western Qinling Mountains back to AD 1650 based on the standard chronology. The climate/tree-growth model accounts for 43.5% of the instrumental temperature variance during the period 1972–2006. Spatial correlation analyses with the gridded temperature data shows that the temperature reconstruction captures regional climatic variations over central and southeast China, and strong teleconnections with the nearby High Asia. There is a good agreement with cold and warm periods previously estimated from tree-rings in Nepal, India and southwest China. The temperature re-construction indicates that there was pronounced cooling in Zhouqu during the Maunder Minimum (late 1600s to early 1700s). The cold period (1813–1827) of the temperature reconstruction coincide with the volcanic eruptions. Significant spectral peaks are found at 56.9, 22.3, 11.4, 2.9, 2.8, 2.6, 2.2 and 2.0 years. The spatial correlation patterns between our temperature reconstruction and SSTs of the Atlantic and Pacific Oceans suggest a connection between regional temperature variations and the atmospheric circulations. It is thus revealed that the chronology has enough potential to reconstruct the climatic variability further into the past.


2016 ◽  
Vol 46 (3) ◽  
pp. 387-401 ◽  
Author(s):  
Miloš Rydval ◽  
Daniel Druckenbrod ◽  
Kevin J. Anchukaitis ◽  
Rob Wilson

Nonclimatic disturbance events are an integral element in the history of forests. Although the identification of the occurrence and duration of such events may help to understand environmental history and landscape change, from a dendroclimatic perspective, disturbance can obscure the climate signal in tree rings. However, existing detrending methods are unable to remove disturbance trends without affecting the retention of long-term climate trends. Here, we address this issue by using a novel method for the detection and removal of disturbance events in tree-ring width data to assess their spatiotemporal occurrence in a network of Scots pine (Pinus sylvestris L.) trees from Scotland. Disturbance trends “superimposed” on the tree-ring record are removed before detrending and the climate signals in the precorrection and postcorrection chronologies are evaluated using regional climate data, proxy system model simulations, and maximum latewood density (MXD) data. Analysis of subregional chronologies from the West Highlands and the Cairngorms in the east reveals a higher intensity and more systematic disturbance history in the western subregion, likely a result of extensive timber exploitation. The method improves the climate signal in the two subregional chronologies, particularly in the more disturbed western sites. Our application of this method demonstrates that it is possible to minimise the effects of disturbance in tree-ring width chronologies to enhance the climate signal.


2010 ◽  
Vol 29 (17-18) ◽  
pp. 2111-2122 ◽  
Author(s):  
X. Shao ◽  
Y. Xu ◽  
Z.-Y. Yin ◽  
E. Liang ◽  
H. Zhu ◽  
...  

The Holocene ◽  
2021 ◽  
pp. 095968362110116
Author(s):  
Jeroen DM Schreel

Over the last few decades – at a range of northern sites – changes in tree-ring width and latewood density have not followed mean summertime temperature fluctuations. This discrepancy sharply contrasts an earlier correlation between those variables. As the origin of this inconsistency has not been fully deciphered, questions have emerged regarding the use of tree-ring width and latewood density as a proxy in dendrochronological climate reconstructions. I suggest that temperature is no longer the most limiting factor in certain boreal areas, which might explain the observed divergence.


1994 ◽  
Vol 42 (1) ◽  
pp. 88-99 ◽  
Author(s):  
Malcolm K. Hughes ◽  
Wu Xiangding ◽  
Shao Xuemei ◽  
Gregg M. Garfin

AbstractMay-June (MJ) and April-July (AJ) precipitation at Huashan in north-central China has been reconstructed for the period A.D. 1600 to 1988 using tree-ring density and width fromPinus armandii. MJ precipitation (based on ring width and maximum latewood density) calibrated and cross-validated against local instrumental data more strongly than AJ precipitation (based only on ring width). A major drought was reconstructed for the mid- and late 1920s, confirmed by local documentary sources. This drought (culminating in 1929) was the most severe of the 389-yr period for MJ and second most severe for AJ, after an event ending in 1683. Neither reconstruction shows much spectral power at frequencies lower than 1 in 10 yr, but both show concentrations of power between 2.1 and 2.7 yr and 3.5 to 9 yr. There are significant correlations between the two reconstructions and a regional dryness/wetness index (DW) based on documentary sources, particularly at high frequencies. These correlations are focused in the 7.6- to 7.3-, 3.8- to 3.6-, and 2.5-yr periods. Using singular spectrum analysis, quasiperiodic behavior with a period close to 7.2 yr was identified in the MJ precipitation reconstruction and in the DW index based on documents.


Sign in / Sign up

Export Citation Format

Share Document