Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau

2010 ◽  
Vol 29 (17-18) ◽  
pp. 2111-2122 ◽  
Author(s):  
X. Shao ◽  
Y. Xu ◽  
Z.-Y. Yin ◽  
E. Liang ◽  
H. Zhu ◽  
...  
IAWA Journal ◽  
2009 ◽  
Vol 30 (4) ◽  
pp. 379-394 ◽  
Author(s):  
Xuemei Shao ◽  
Shuzhi Wang ◽  
Haifeng Zhu ◽  
Yan Xu ◽  
Eryuan Liang ◽  
...  

This article documents the development of a precisely dated and wellreplicated long regional tree-ring width dating chronology for Qilian juniper (Juniperus przewalskii Kom.) from the northeastern Qinghai- Tibetan Plateau. It involves specimens from 22 archeological sites, 24 living tree sites, and 5 standing snags sites in the eastern and northeastern Qaidam Basin, northwestern China. The specimens were cross-dated successfully among different groups of samples and among different sites. Based on a total of 1438 series from 713 trees, the chronology covers 3585 years and is the longest chronology by far in China. Comparisons with chronologies of the same tree species about 200 km apart suggest that this chronology can serve for dating purposes in a region larger than the study area. This study demonstrates the great potential of Qilian juniper for dendrochronological research.


The Holocene ◽  
2012 ◽  
Vol 23 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Minhui He ◽  
Bao Yang ◽  
Achim Bräuning ◽  
Jianglin Wang ◽  
Zhangyong Wang

Knowledge of Asian monsoon variability remains limited because of sparse instrumental data available only for short time series. Here, an updated tree-ring width record covering the period ad 1037–2009 was developed for the south-central Tibetan Plateau (TP). Correlation analysis revealed a significant relationship ( r = 0.71) between the tree-ring index and annual (previous July to current June) precipitation series for the instrumental period 1963–2008, which accounts for 50.41% of the rainfall variability. Based on a linear regression model, the longest available regional precipitation history was reconstructed. Spatial correlation between tree ring width and annual precipitation data from previous July to current June indicates that the reconstruction is representative of precipitation changes on the south-central TP. Regional wet conditions occurred during ad 1095–1161, 1376–1403, 1414–1446, 1518–1537, 1549–1572, 1702–1757, 1848–1878 and 1891–1913, while dry periods were identified during ad1189–1242, 1256–1314, 1329–1357, 1470–1491, 1573–1623, 1636–1686, 1761–1821, 1823–1847, 1879–1890 and 1931–1985. The negative correlation between our reconstructed precipitation and India monsoon rainfall series indicates the seesaw pattern over northern and southern monsoon Asia. It is suggested that solar radiation-induced sea surface temperature (SST) anomalies over the tropical Pacific influence regional rainfall patterns. The degree of this influence has been stable at the multidecadal scale during the past 1000 years.


2018 ◽  
Vol 47 ◽  
pp. 48-57 ◽  
Author(s):  
Minhui He ◽  
Achim Bräuning ◽  
Jussi Grießinger ◽  
Philipp Hochreuther ◽  
Jakob Wernicke

2015 ◽  
Vol 28 (13) ◽  
pp. 5289-5304 ◽  
Author(s):  
Jianglin Wang ◽  
Bao Yang ◽  
Fredrik Charpentier Ljungqvist

Abstract Although tree-ring-width-based temperature reconstructions of centennial-to-millennial length have previously been published for many parts of the eastern Tibetan Plateau (ETP), a millennium-long regional-scale composite reconstruction with annual resolution has so far been lacking. Here, the authors present a reconstruction of June–August (JJA) temperature variability over the ETP for the period AD 1000–2005 using a nested composite-plus-scale (CPS) approach to 12 temperature-sensitive tree-ring width chronologies, including 946 individual tree-ring width series. The composite reconstruction reveals warm episodes occurring during much of the sixteenth, nineteenth, and twentieth centuries and cold episodes during much of the eleventh, seventeenth, and eighteenth centuries. The period AD 1996–2005 is likely the warmest decade in the context of the past millennium. The authors explore the influence of possible forcings, finding only a weak direct relationship of temperature changes over the ETP with solar forcing at multidecadal time scales but a robust in-phase relationship with the Atlantic multidecadal oscillation (AMO) during the past millennium. This suggests that the AMO may play an important role in controlling summer temperature variability over the ETP at multidecadal time scales. A comparison with temperature reconstructions from the higher latitudes of East Asia, central-eastern China, and the whole of the Northern Hemisphere shows that the cold eleventh century and the warm nineteenth century prevailing over ETP are somewhat unique, suggesting regional specific characteristics of the temperature variability in this region. This result highlights the need to further increase the number of millennium-long, high-resolution temperature records from East Asia.


2018 ◽  
Vol 51 (9-10) ◽  
pp. 3735-3746 ◽  
Author(s):  
Chunming Shi ◽  
Valérie Daux ◽  
Zongshan Li ◽  
Xiuchen Wu ◽  
Tianyi Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document