scholarly journals Identification and Characterization of Forced Degradation Products for Dofetilide using Rapid and Sensitive UPLC-MS/MS Method and HRMS Studies

2019 ◽  
Vol 31 (12) ◽  
pp. 2763-2769
Author(s):  
M. Ajay Babu ◽  
G.V. Krishna Mohan ◽  
N. Naresh ◽  
Ch. Krishnam Raju ◽  
Sharad D. Mankumare

A simple, rapid and efficient method has been developed and validated using ultra UPLC combined with Q-ToF MS system for recognition and characterization of forced degradation products obtained from dofetilide degradation studies. The dofetilide drug is an antiarrhythmic and belongs to Class III and it was treated with various stress conditions like acidic, basic, oxidative, photolytic and thermal conditions as per ICH guidelines. The main drug shows extensive degradation towards oxidative degradation conditions and single degradation product was identified through chromatogram. The chromatographic separation among main and its impurities were attained through 2.1 × 150, 1.8 μm column from gradient elution using UPLC and its detection at wavelength 230 nm. The validation was performed for the developed method using various parameters like specificity, linearity and robustness studies. Waters Synapt G2 Q TOF system was used and performed MSn studies to establish mass spectral fragmentation pathway for drug and its degradation products and determined accurate masses study. The efficiency of this method was helpful to identify and characterize the drug and degradation products using LC/MSn techniques.

2020 ◽  
Vol 26 (6) ◽  
pp. 425-431
Author(s):  
Naga Veera Yerra ◽  
S Babu Dadinaboyina ◽  
LSSN Vigjna Abbaraju ◽  
MVN Kumar Talluri ◽  
Jagadeshwar Reddy Thota

Indacaterol (IND), 5-[2-[(5,6-Diethyl-2,3-dihydro-1H-inden-2-yl)amino]-1-hydroxyethyl]-8-hydroxyquinolin-2(1H)-one, is an active pharmaceutical ingredient (API) which is used to treat chronic obstructive pulmonary disease (COPD). We followed the International Council for Harmonization (ICH) guide lines to study the degradation behavior of IND under various stress conditions. Stressed degradation of the drug was performed under hydrolytic (alkaline, acidic and neutral), photolytic, oxidative and thermal conditions. Identification and characterization of IND and its forced degradation products (DPs) were demonstrated by using LC-HRMS and MS/MS method. A total of three DPs (DP1-DP3) were identified and characterized. The IND was found to be stable under photolytic, oxidative and thermal conditions, whereas it produced three DPs in acidic, basic and neutral hydrolytic stress conditions.


2020 ◽  
Vol 16 (8) ◽  
pp. 1130-1139
Author(s):  
Singaram Sathiyanarayanan ◽  
Chidambaram Subramanian Venkatesan ◽  
Senthamaraikannan Kabilan

Background: Regadenoson is an A2A adenosine receptor agonist that is a coronary vasodilator and commonly used as a pharmacologic cardiac stressing agents. Methods: HPLC method was used for the analysis of related substances. The degraded impurities during the process were isolated and characterized by IR, Mass and NMR spectral analysis. Results: Forced degradation study of regadenoson under conditions of hydrolysis (neutral, acidic and alkaline) and oxidations suggested in the ICH Q1A(R2) was accomplished. The drug showed significant degradation under all the above conditions. On the whole, five novel degradation products were found under diverse conditions along with process related impurities which were not reported earlier. Conclusion: All the degradation products were well characterized by using advanced spectroscopic techniques like IR, 1H NMR, 13C NMR and Mass spectra. The identification of these impurities will be productive for the quality control during the production and stability behavior of the regadenoson drug substance.


Author(s):  
Rochele Cassanta Rossi ◽  
Josué Guilherme Lisbôa Moura ◽  
Vanessa Mossmann ◽  
Patrícia Weimer ◽  
Pedro Eduardo Fröehlich

Abstract Fosamprenavir calcium is a protease inhibitor widely used in the treatment and prevention of human immunodeficiency virus and acquired immunodeficiency syndrome. This protease inhibitor serves as a prodrug of amprenavir, offering better oral bioavailability. Although this drug was approved by the FDA in 2003, there are few methods established for quantifying the stability for quality control analysis of fosamprenavir-coated tablets. The purpose of the study was to develop and validate a method for determining the stability of fosamprenavir-coated tablets (Telzir®) that may be applied by any quality control laboratory. Chromatographic separation was performed using a Vertical RP-18 column programmed to run a gradient elution with sodium acetate buffer and acetonitrile. Flow rate was 1.2 mL min−1 for a total run time of 15 min. Ultraviolet detection was set at 264 nm and the use of a photodiode array detector in scan mode allowed selectivity confirmation by peak purity evaluation. The analyte peak was found to be adequately separated from degradation products generated during forced degradation studies. Thus, the proposed method was found to accurately indicate stability and was sufficient for routine quantitative analysis of fosamprenavir in coated tablets without interference from major degradation products and excipients.


2014 ◽  
Vol 37 (4) ◽  
pp. 368-375 ◽  
Author(s):  
Thippani Ramesh ◽  
Pothuraju Nageswara Rao ◽  
Ramisetti Nageswara Rao

2013 ◽  
Vol 19 (4) ◽  
pp. 471-484
Author(s):  
Pritam Jain ◽  
Miketa Patel ◽  
Amar Chaudhari ◽  
Sanjay Surana

A simple, specific, accurate and precise reverse phase high pressure liquid chromatographic method has been developed for the simultaneous determination of Paracetamol and Lornoxicam from tablets and to characterize degradation products of Lornoxicam by reverse phase C18 column (Inertsil ODS 3V C-18, 250 x 4.6 mm, 5 ?). The sample was analyzed using Buffer (0.02504 Molar): Methanol in the ratio of 45:55, as a mobile phase at a flow rate of 1.5 mL/min and detection at 290 nm. The retention time for Paracetamol and Lornoxicam was found to be 2.45 and 9.40 min respectively. The method can be used for estimation of combination of these drugs in tablets. The method was validated as per ICH guidelines. The linearity of developed method was achieved in the range of 249.09 - 747.29 ?g/mL (r2=0.9999) for Paracetamol and 4.0125 - 12.0375 ?g/mL (r2=0.9999) for Lornoxicam. Recoveries from tablets were between 98 and 102%. The method was validated with respect to linearity, accuracy, precision, robustness and forced degradation studies which further proved the stability-indicating power. During the forced degradation studies lornoxicam was observed to be labile to alkaline hydrolytic stress and oxidative stress (in the solution form). However, it was stable to the acid hydrolytic, photolytic and thermal stress (in both solid and solution form). The degraded products formed were investigated by electrospray ionization (ESI) time-of-flight mass spectrometry, NMR and IR spectroscopy. A possible degradation pathway was outlined based on the results. The method was found to be sensitive with a detection limit of 0.193 ?g/ml, 2.768 ?g/ml and a quantitation limit of 0.638 ?g/ml, 9.137 ?g/ml for lornoxicam and paracetamol, respectively. Due to these attributes, the proposed method could be used for routine quality control analysis of these drugs in combined dosage forms.


2019 ◽  
Vol 43 (19) ◽  
pp. 7294-7306 ◽  
Author(s):  
G. Shankar ◽  
Roshan M. Borkar ◽  
Suresh Udutha ◽  
M. Kanakaraju ◽  
G. Sai Charan ◽  
...  

Omeprazole (OMP), a prototype proton pump inhibitor used for the treatment of peptic ulcers and gastroesophageal reflux disease (GERD), was subjected to forced degradation studies as per ICH guidelines Q1A (R2).


2019 ◽  
Vol 31 (4) ◽  
pp. 851-854
Author(s):  
Santhosh Guduru ◽  
V.V.S.R.N. Anji Karun Mutha ◽  
B. Vijayabhaskar ◽  
Muralidharan Kaliyaperumal ◽  
Raghu Babu Korupolu ◽  
...  

The stability of aceclofenac under stress conditions was assessed to identify the degradation products. So, it was subjected to stress conditions like acid, base and oxidation, according to ICH guideline Q1A (R2). One degradation product formed when the drug was subjected to acid stress. Three degradation products were formed during the basic stress condition. The drug substance was found to be stable to oxidative stress. The degradants formed during the stress were separated on a C-18 column using gradient preparative HPLC elution. The only product (DP-2) formed during the acid stress and this one is same as of one of the three degradation products (DP-1, DP-2, DP-3) were formed during base stress. 1D and 2D NMR spectra and mass spectral analysis supported the proposed structures for the products. The products DP-2 and DP-3 have been reported earlier but this is the first report of product DP-1 as a degradation product of aceclofenac.


Sign in / Sign up

Export Citation Format

Share Document